Constraint Satisfaction Problems

Juhan Ernits
Institute of Computer Science
Tallinn University of Technology
Juhan.ernits@ttu.ee
2016

Outline

Constraint Satisfaction Problems (CSP)
Backtracking search for CSPs

Local search for CSPs

Tree search and decomposition of CSPs

Constraint satisfaction problems (CSPs)

Standard search problem:

— state is a "black box“ — any data structure that supports successor
function, heuristic function, and goal test

CSP:

— state is defined by variables X; with values from domain D,

— goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Example: Map-Coloring

Northern
Territory
Westarn Queensland
Australia
South —
Australia
[New South Wales
;m\mﬂ
. T i
Variables WA, NT, Q, NSW, V., SA, T =

Domains D, = {red,green,blue}
Constraints: adjacent regions must have different colors

e.g., WA # NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

=L

T

\gu

Tasm"a

e Solutions are complete and consistent assignments,
e.g., WA =red, NT = green,Q = red,NSW = green,V =
red,SA = blue,T = green

Constraint graph

e Binary CSP: each constraint relates two variables
e Constraint graph: nodes are variables, arcs are constraints

Varieties of CSPs

* Discrete variables

— finite domains:
* nvariables, domain size d = O(d") complete assignments
e e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

— infinite domains:
* integers, strings, etc.
* e.g., job scheduling, variables are start/end days for each job
* need a constraint language, e.g., StartJob, + 5 < StartJob,
e Continuous variables
— e.g., start/end times for Hubble Space Telescope observations
— linear constraints solvable in polynomial time by linear programming

Example: Job-shop scheduling

e E.g. schedule day’s worth of jobs in a factory

X = {Azxlep, Axleg, Wheelpp, Wheelpp, Wheel g, Wheelp g, Nutsgr,
Nutspr, Nutsgp, Nutsyp, Caprr, Caprr, Caprg, Caprp, Inspect}

Precedence constraints: Tl +d < TE

Axlep + 10 < Wheelpp; Axler + 10 < Wheel;
Axleg + 10 < Wheelpp, Azxlep + 10 < Wheelpp

Wheelpr + 1 < Nutspp: Nutspp+2 < Cappr
Wheelpp +1 < Nutspp; Nutspp+2 < Caprp
Wheelpg + 1 < Nutspp, Nutspg + 2 < Cappp
Wheelpp+1< Nutspg: Nutspp+2 < Caprp

(A.’ITEEF + 10 < 4411‘-{-63?] or [;51:1’-385 + 10 < fl:FJEFJ (Disjunctive constraints)

X +dx < Inspect (If inspection takes 3 minutes, can all be done in 30 minutes?)

D; ={1,2,3,...,27} (Finite domain)

Varieties of constraints

* Unary constraints involve a single variable,
— e.g., SA # green

* Binary constraints involve pairs of variables,
— e.g.,, SAz#WA

* Global constraints involve 3 or more variables,
— e.g., cryptarithmetic column constraints
— e.g. allDiff constraints (all values different)

Example: Cryptarithmetic

T W O
+ T W O w) (R) YO
FOUR 7

Variables: FTU W

ROC,C,C; . C,
Domains: {0,1,2,3,4,5,6,7,8,9}

Constraints: Alldiff (FT,U,W,R,0)

— 0+0=R+10-C,

- C+W+W=U+10-C,

— C+T+T=0+10-C;

— C,=F

Real-world CSPs

Assignment problems
— e.g., who teaches what class
Timetabling problems

— e.g., which class is offered when and where?
— Involves preference constraints in addition to absolute ones

Transportation scheduling
Factory scheduling

Notice that many real-world problems involve real-
valued variables

Solving CSPs

 There are two main approaches for solving
CSPs:

— Inference

— Search

e Sometimes CSPs can be solved by inference
alone.

* In other cases, solving CSP-s involves a
combination of inference and search.

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

B W

Initial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that does not
conflict with current assignment

—> fail if no legal assignments
Goal test: the current assignment is complete

This is the same for all CSPs

Every solution appears at depth n with n variables
— use depth-first search

Path is irrelevant, so can also use complete-state formulation
b=(n-/)datdepth /, hence n! - d" leaves
Can be fixed by the observation that variables in CSPs are commutative

Backtracking search

e \Variable assignments are commutative}, i.e.,
[WA =red then NT = green] same as [NT = green then WA =red]

Only need to consider assignments to a single variable at each node
- b =d and there are d" leaves

e Depth-first search for CSPs with single-variable assignments is called
backtracking search

e Backtracking search is the basic uninformed algorithm for CSPs

e (Can solve n-queens forn = 25

Backtracking example

S5

Backtracking example

Backtracking example

S

—]

o ¢

/\

- M

Backtracking example

s

—]

o ¢

/\

- M

—

s gih

Improving backtracking efficiency

* General-purpose methods can give huge gains
in speed:
— Which variable should be assigned next?
— In what order should its values be tried?
— Can we detect inevitable failure early?

Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution or failure
if assignment is complete then return assignment
var<+— SELECT-UNASSIGNED- VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences < INFERENCE(csp, var, value)
if inferences # failure then
add inferences to assignment
result <— BACKTRACK(assignment, csp)
if result # failure then
return result
remove {var = value} and inferences from assignment
return failure

Backtracking search

backtracking search (csp,

select unassigned variable = first unassigned variable,
order_domain_values = unordered_domain_values,
inference = no inference) :
backtrack (assignment) :
len (assignment) == len(csp.vars):
assignment
var = select unassigned variable(assignment, csp)
value order domain values(var, assignment, csp):
0 == csp.nconflicts(var, value, assignment):
csp.assign(var, value, assignment)
removals = csp.suppose (var, value)
inference (csp, var, value, assignment, removals):
result = backtrack(assignment)
result :
result
csp.restore (removals)
csp.unassign(var, assignment)

result = backtrack({})

result csp.goal test(result)
result

Most constrained variable

e Most constrained variable:

choose the variable with the fewest legal values

Sems e ey S

e a.k.a. minimum remaining values (MRV)
heuristic

Most constraining variable

 Tie-breaker among most constrained variables

 Most constraining variable:

— choose the variable with the most constraints on
remaining variables

R R R

Least constraining value

* Given a variable, choose the least constraining
value:

— the one that rules out the fewest values in the
remaining variables

Allows 1 value for SA

A -

e Combining these heuristics makes 1000 queens
feasible

Forward checking

* |dea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

NS

WA NT Q NSW v SA T

|dea:

— Keep track of remaining legal values for unassigned variables

Forward checking

— Terminate search when any variable has no legal values

SSEA S5

WA

NT

Q

NSW

|dea:

— Keep track of remaining legal values for unassigned variables

Forward checking

— Terminate search when any variable has no legal values

SSEA SSEa o~

WA

NT

Q

NSW

v

SLIL

Forward checking

e |dea:
— Keep track of remaining legal values for unassigned variables
— Terminate search when any variable has no legal values

WA NT Q NSW v SA T
ENfEENFEIETEENFEIEfEINE"EIETDE
B "'EjENEEfFEENE) EEYEH
] HjOT N EETE HET R
] | JE I ENE

Constraint propagation

 Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for
all failures:

SSEA SSEa S~

WA NT Q NSW v
ENEENEENEENE|ENDE HENE
] EEFEENEETE HETE
] 1 N _EFTE 1L

e NT and SA cannot both be blue!
e Constraint propagation repeatedly enforces constraints locally

Inference

 Forward checking

 Constraint propagation
— Node consistency
e All unary constraints of a variable satisfied

— Arc consistency

e Every value in the domain of a variable satisfies the
variable’s binary constraints

— Path consistency
— K-consistency

Arc consistency

e Arc consistency makes each binary constraint (arc) consistent
e X —2Yis consistent iff

for every value x of X there is some allowed y

SSEA S o~

WA Q NSW v SA T
| | |H EET N 1L N

~¢—

Arc consistency

e Arc consistency makes each binary constraint (arc) consistent
e X —2Yis consistent iff

for every value x of X there is some allowed y

SSEA SSEa o~

WA Q NSW v SA T
| | IIMII 1L N

\9_/

Arc consistency

e Arc consistency makes each binary constraint (arc) consistent
e X —2Yis consistent iff

for every value x of X there is some allowed y

SIS o~

WA Q NSW v SA T
] B m i m EErE

~—

e |If Xloses a value, neighbors of X need to be rechecked

Arc consistency

Arc consistency makes each binary constraint (arc) consistent
X =Y is consistent iff
for every value x of X there is some allowed y

SSEA S o~

WA NT Q NSW v SA T
] B m i m) (I
— ~ —

S

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj) < REMOVE-FIRST(queue)
if REVISE(csp, X, Xj) then
if size of D; = 0 then return false
for each X in X; Neicusors \ {X;} do
add (X}, X;) to queue

function REVISE(csp, X;, X;) returns true iff we revise the domain of X;
revised < false
for each zin D; do
if no value y in D; allows (z,7) to satisfy the constraint X; and X; then
delete z from D,
revised <— true
return revised

e Time complexity: O(n2d3)

o

i

o

i

Arc consistency algorithm AC-3

AC3 (csp, queue=None, removals=None):
H]T"[Fig‘ 6'3]"17"
1t gueue is None:
queue = [(Xi, Xk) for Xi in csp.vars for Xk in csp.neighbors[Xi]]
csp.support pruning()
while queue:
(Xi, X7J) = queue.pop()
1f revise(csp, ¥Xi, Xj, removals):
1f not csp.curr domains[Xi]:
return False
for Xk in csp.neighbors[Xi]:
1f Xk !'= Xi:
queue.append ((Xk, Xi))

-

return 1rue

revise (csp, Xi, Xj, removals):
"Return true 1f we remove a value."
revised = False
for x 1in csp.curr domains[Xi][:]:
If Xi=x conflicts with Xj=y for every possible y, eliminate Xi=x
1f every(lambda y: not csp.constraints(Xi, x, Xj, V),
csp.curr domains[X]]):
csp.prune (Xi, x, removals)
revised = True
return revised

Sudoku

Sudoku

£l

m
h |—J o |l |SD]f] &

M m 3
]

L

Arc consistency is able to solve some Sudoku puzzles and no classical search is needed!

Local search for CSPs

Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned

To apply to CSPs:
— allow states with unsatisfied constraints
— operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
— choose value that violates the fewest constraints
— i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns (4% = 256 states)
Actions: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

H B * |

a:>. :>llt
¥ —w W ¥« N
H B H B E

h=5 h=2 h=0

Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)

Utilising the structure of problems

Topological sorting of nodes

Tree search

function TREE-CSP-SOLVER(¢sp) returns a solution, or failure
inputs: csp, a CSP with components X, D, C

n «— number of variables in X
assignment <— an empty assignment
root «— any variable in X
X «— TOPOLOGICALSORT(X, root)
for) = n down to 2 do
MAKE-ARC-CONSISTENT(PARENT(X), X;)
if it cannot be made consistent then return failure
for . =1tondo
assignment[X,;] < any consistent value from D),
if there is no consistent value then return failure
return assignment

(D

i

Tree search

tree csp solver(csp):

"[Fig. 6.11]"
n = len(csp.vars)
assignment = {}

root = csp.vars[0]
X, parent = topological sort(csp.vars, root)
for XJ in reversed(X):

1f not make arc consistent (parent[X]J], XJ, csp):

return None
for X1 1in X:
1f not csp.curr domalns([X1]:
return None
assignment[Xi] = csp.curr domains[X1][0]

[

return assignment

Tree search on general graphs

O
O, @

Tree decomposition

— 7 -,
- _.ﬁ -, ",
"-.‘.?-"Eﬁ-. ".-:-"-' — - -:::I
A W R S T
|I"'_ \ T |..-I |I | I _.-'1"‘-.{" I|
i A i -
II _.-"I N .-.L..ll | -l'. 'r|:-L1:'1.-.
\ [A Ve
H"‘*-u. ---;E’ — =
o :”f (@™
|. _.-'.-\"—I'.-. .ll'
II .-"... .I-
g e
1, 54 p (NSWY
*Every variable in the original problem M Y
appears in at least one of the subproblems T
* If two vars are connected by a contraintin =~ T T
the orig. Problem, they must appear _.f, ,f 4
together in at least one subproblem (WL —L‘j-'i"f.“-] II T
. . i .-"-._ = .\1."-. - i I'-._ -~
*|F a variable appears in two subproblems vl /0
. . . -'-__ l"‘—"'. .-'.. -"‘-.
in the tree, it must appear in every - P .

subproblem along the path connecting the
subproblems.

Summary

CSPs are a special kind of problem:
— states defined by values of a fixed set of variables
— goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

Iterative min-conflicts is usually effective in practice

If a problem is too hard to solve, break it into pieces and try solving it
piece by piece

	Constraint Satisfaction Problems��
	Outline
	Constraint satisfaction problems (CSPs)
	Example: Map-Coloring
	Example: Map-Coloring
	Constraint graph
	Varieties of CSPs
	Example: Job-shop scheduling
	Varieties of constraints
	Example: Cryptarithmetic
	Real-world CSPs
	Solving CSPs
	Standard search formulation (incremental)
	Backtracking search
	Backtracking example
	Backtracking example
	Backtracking example
	Backtracking example
	Improving backtracking efficiency
	Backtracking search
	Backtracking search
	Most constrained variable
	Most constraining variable
	Least constraining value
	Forward checking
	Forward checking
	Forward checking
	Forward checking
	Constraint propagation
	Inference
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency algorithm AC-3
	Arc consistency algorithm AC-3
	Sudoku
	Sudoku
	Local search for CSPs
	Example: 4-Queens
	Utilising the structure of problems
	Tree search
	Tree search
	Tree search on general graphs
	Tree decomposition
	Summary

