UPPAAL TUTORIAL

Modeling Real-Time Systems

‘ 01.02.2018

‘ Deepak Pal




ABOUT ME
o Ph.D.

trib

Dis

» Model based testing of

ed

ut

systems.

http://research-deepak.com



http://research-deepak.com/
http://research-deepak.com/
http://research-deepak.com/

WHAT IS A MODEL?

A model is a description of a system's behavior.

Behavior can be described in terms of input sequences, actions,
conditions, output and flow of data from input to output.

It should be practically understandable and can be reusable;
shareable must have precise description of the system under test.



WHAT IS A MODEL?

A model is a description of a system's behavior.

Behavior can be described in terms of input sequences, actions,
conditions, output and flow of data from input to output.

It should be practically understandable and can be reusable;
shareable must have precise description of the system under test.

Can you name some model formalisms to describe different
aspects of system behavior ?



WHAT IS A MODEL?

A model is a description of a system's behavior.

Behavior can be described in terms of input sequences, actions,
conditions, output and flow of data from input to output.

It should be practically understandable and can be reusable;
shareable must have precise description of the system under test.

Can you name some model formalisms to describe different
aspects of system behavior ?

FSM, State chart, UML, Decision Tables, Timed Automata .. etc



UPPAAL INTRODUCTION

UPPAAL 1s a tool for modeling, validation (via graphical
simulation) and verification (via automatic model-checking)
of real-time systems.

Appropriate for systems that can be modeled as a
collection of non-deterministic processes with finite control
structure and real-valued clocks (1.e. timed automata)

UPPAAL = UPP (Uppsala University) + AAL (Aalborg
University).

http://www.uppaal.org



UPPAAL INTRODUCTION

UPPAAL 1s a tool for modeling, validation (via graphical
simulation) and verification (via automatic model-checking)
of real-time systems.

Appropriate for systems that can be modeled as a
collection of non-deterministic processes with finite control
structure and real-valued clocks (1.e. timed automata)

UPPAAL = UPP (Uppsala University) + AAL (Aalborg
University).

http://www.uppaal.org



EDITOR

1 Mhome fevelin/kool/formaalsed_meetodid fuppaal/Light.xml - UPPA AL
File Edit View Tools Options Help

Ba@ajala[Kal--
Editor | Simulator | Verifier
Drag out |: Mame: Light | Parameters: |

[ Project
[} peclarations
o ‘& Light
& &} Button
[ system declarations

BRIGHT




SIMULATOR

& XX Variable values L nr s ===
Eile Edit View Tools Options Help } System
Bla® «aa [§aw -

Editor | Simulator |~ verlfler |

I Drag out V =

Enabled Transitions >3 — B

press?
=3 ‘HFIG‘-{T

Drag out

press: B --= L

«

(Y —

Mext Reset |

Simulation Trace

OFF, -}
press: B L
(0N, -}
press: Bo--> L
(OFF, =}
press: B --= L
(OmN, =)
press; B —= L

(OFF, 4

Trace Flle:

Prav Mext Replay
Open Save Auto

Slow Fast

Controls > @ronization H@




SIMULATION

Step-by-step simulation —

Good for observations of variable values at each step -
Manually selecting transitions (when many are enabled)

Good for tracing errors

Automatic simulation - Good for observing overall system
behavior

Saving/Opening Simulation Traces



LLOCATIONS

\Locaﬂons




EDGES

Edit Edge

Comments

sync:

Update:

press?




DECLARATION

Declarations are either global or local (to a template) and
can contain declarations of clocks, bounded integers,
channels (although local channels are useless), arrays,
records, and types.

8 chan d;

a channel.

" urgent chan e;

an urgent channel.
" struct { int a; bool b; } 51 =1 2, true };

an instantiation of the structure from above where the members z and v are set to 2 and true.



® const int a = 1;

constant a with value 1 of type integer.

" bool b[8], c[4];
two boolean arrays b and ¢, with 8 and 4 elements respectively.

" int[@,188] a=5;

an integer variable with the range [0, 100] initialised to 5.

m int a[2][3] ={ {1, 2, 3}, { 4,5, 6} };

a multidimensional integer array with default range and an initialiser.

" clock x, y;

two clocks x and y.

More information:

http://www.it.uu.se/research/group/darts/uppaal/help.php?file=Introduction.shtml ‘




VERIFIER

fhomefevelin/kool/formaalsed_meetodid/uppaal/Light.xml - UPPA AL
File Edit View Tools Options Help

Bja|m LIRS

Overview

An L BRIGHT °|

A== L, 0OFF o :

E<= (L.OMN and L.x>3] O Check

El]l L.OFF O Insart

a&[1 nat deadlock ﬂ' Remave
Camments

Query

W= LBRIGHT

Comment

tull laheb alatl olekusse BRIGHT -- vale

-

Status

Established direct connection to local server.

(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2000 -- server.
Disconnected.

Established direct connection to local server.

(Academic) UPPAAL version 4.0.13 (rev. 4577), September 2010 - server.

The query language of Uppaal, used to specify properties to be .
checked, 1s a subset of TCTL (timed computation tree logic)




QUERY IN UPPAAL

" E - exists a path ( “E” in UPPAAL).
= A - for all paths ( “A” in UPPAAL).
= [] - all states in a path

" <> - some states in a path

The following combination are supported:
" A[], A<>, E<>, E[].



E<> P - “P REACHABLE”

E<> p — it is possible to reach a state in
which p is satisfied.

P is true in (at least) one reachable state.




Al ] P — “INVARIANTLY P”

A[ ] p — p holds invariantly.

P is true in all reachable states.




A<> P — “INEVITABLE P”

A<> p — p will inevitable become true

The automaton is guaranteed to eventually
reach a state in which p is true.

P is true in some state of all paths.




E[ ] P — “POTENTIALLY ALWAYS P”

E[ ] p — p is potentially always true.

There exists a path in which P is true in all
states.




P — Q— “P LEAD TO Q”

p --> g — if p becomes true, q will inevitably
become true.

p

J

Same as A[](p imply A<>q)




SPECIFYING PROPERTIES

= A[] not deadlock

- no deadlocks
- true

= E[]L.OFF

- I1s it possible that the the light i1s always OFF
- true

" E<>(L.ON and L.x >3)

- It Is possible that the light isn't pressed a second time within 3 seconds after it's
turned on
- true

= A<>L.OFF

- no matter how your operate the light, it will go to OFF
- true

= A<>L.BRIGHT

- no matter how your operate the light, it will go to BRIGHT
- false




LIGHT CONTROLLER EXAMPLE

* Model the abstract behavior of a simple light controller switch
shown 1in fig below.




REQUIREMENTS

The lamp has three locations: OFF, ON, and BRIGHT.

If the user presses a button, 1.e., synchronizes with press? ,
then the lamp is turned on.

If the user presses the button again, the lamp is turned off.

However, if the user 1s fast and rapidly presses the button
twice, the lamp 1s turned on and becomes bright.

The user can press the button randomly at any time or
even not press the button at all. The clock x of the lamp 1is
used to detect if the user was fast (x <= 3) or slow (x > 3).



NEXT LAB:

Urgent and Committed Locations
Urgent Channels
Broadcast Synchronization .

Networks of Timed Automata
Model Checking



