Machine Learning, Lecture 4: Gaussian Mixture
Model & EM algorithm

S. Némm

IDepartment of Computer Science, Tallinn University of Technology

26.02.2015



Latent Variable Models

Latent Variable Models (LVM) - models with hidden variables.

An important assumption is that observed variables are correlated
because they arise from a hidden common "cause”. Let
Zi1,...,zi are L latent variables, and x;1,...,x; p are D visible
variables.

The form of the likelihood L(x; | zi) and the prior p(z;) defines the
model.



Variety of LVMs

The form of the likelihood p(x; | z;) and the prior p(z;) lead
following models

p(xi | z) p(z) Name

MVN Discr. Mixture of Gaussians
Prod. Discr. Discr. Mixture of Multinominals
Prod. Gauss. Prod. Gauss. Factor analysis/probabilitstic PCA
Prod. Gauss. Prod. Laplace Probabilistic ICA/sprase coding
Prod. Discr. Prod. Gauss. Multinominal PCA
Prod. Gauss. Dirichlet Latent Dirichlet allocation

Prod. Noisy-QR.  Prod.Bernoulli BN20/QMR

Prod. Bernoulli.  Prod. Bernoulli Sigmoid belief net



Mixture models

Let z; = {1,..., K}, - discrete latent states.

p(zi) = Cat(m)
[,(X,' ’ zi = k) = pk(Xi)

Overall model is known as Mixture model (we are mixing together
K base distributions)

XI’9 ZWkPk Xl"g

where mixed weights 7y satisfy 0 < 7, <1 and Z,’le me =1



Mixture of Gaussians

Mixture of Gaussian (MOG) is the most widely used mixture
model. Each base distribution is a multivariate Gaussian with
mean py and covariance matrix ¥

p(x; | 6) Zﬂ'kN Xi | pks k)

k=1



Mixture of Gaussians
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Mixture of Gaussians

» Latent variables z; :  z; = k component k generated point x;.

» p(zi = k | m) = 7y - probability of being generated by a
component.

> p(x,- | zi = k, s, 2) :/\/(x; | pk,ok) - probability of a given
point whereas it is known which component generated it.

> p(x,-,z,- =k |, p, E) = ﬂkN(x; | Mk,zk) - joint probability
of generating the component and the point from it.

K
> p(x,- |, @, 2) = Zwkj\/(x,- | ,uk,Zk) - marginal probability
k=1
of the point.



Parameter estimation for Gaussian Mixture Models

» The goal is to estimate parameters: 7, pg, 2k, k=1,....K
> The log-likelihood function of GMM is

n K
logp(X | m,p,2) = Zlog(z N (i | uk,Zk))
k=1

i=1

» Possible problems:

» Unidentifiability: K-component mixture has K! possible
labeling therefore there is no unique maximal likelihood
estimate and in turn no unique maximum a posterior estimate.

» Summation inside the logarithm ... .



Observe the following

» The knowledge of component parameters and mixing
proportions allows to compute the probability that the
component k responsible ! for the i-th point
p(zi = k| x;, ™, p, ).

» The knowledge of the responsibilities allows to compute the
estimates for the mixing coefficients my.

» The knowledge of responsibilities and mixing coefficients
allows to compute the estimates for component means p, and
variances Xy

This leads the idea of two step iterative algorithm:
» Step E: Inferring the missing values given the parameters.

» Step M: Optimization of the parameters given the "filled
data”.

1Responsibility of the cluster k for point i is the posterior probability that
point i belongs to cluster k, p(z = k | x;,0)



Expectation - Maximization

Expectation - Maximization (EM):
» Let x; denote the visible observed values in case i, and z; -

hidden or missing variables. The goal is to maximize the log
likelihood of the observed data:

N N
L(0) = logp(xi | ) = log [Z p(xi, 2 | 9)}
i=1 i=1 z;

» Way around the problem with the sum under the log. Define
the complete data log likelihood as is follows

N
Lc(0) = logp(xi,zi | 6)
i=1

Note, that this could not be computed due to the fact that z;
are unknown.



EM

» Define expected complete data log likelihood:
Q0,051 = E[I(0) | D,0 1]

here t is the iteration number. Q will be referred as auxiliary
function.

» E step computes the latent values needed to compute
Q0| 051).
» M step optimizes @ with respect to 6.

0" = arg mng(@, ot~ 1)



EM -algorithm

> Auxiliary function:
0.0 = N relog e + 3 Y ralegple 0

» E step: compute the responsibilities r; , for each i and k:

mep(xi | 0571)
S mrep(xi | 057

rik =



EM -algorithm

» Optimize @ with respect to 7, poy, k.

1
==

>

where re =" ri
» Derive M step for the u, and X

L, i) = Zr,k[log|zk|+( ) "o (xi
. Z,'ri,kxi
Uk = e
t
i kXiX;
Y = 2 114X Irk A

— k)]



EM & 7

>
Yo fikXi
Bk = —————
rk
t
Z- r,-,kx,-x- T
Yo = S — gy
rk
> Let us suppose now that all the covariances are set to the
same symmetric matrix for each cluster.
Yi=...=YXk=d%l
> Let us further suppose that mixing properties are uniform
7w, = fraclK
> The only parameter to estimate are cluster means ik

» We got 7



