

Real-time Operating Systems and
Systems Programming

Security

Te olete C loengus
11:41:39

Security Topics

 General issues
 Specific issues
 C specific issues

Te olete C loengus
11:41:39

But First!

 http://www.youtube.com/watch?feature
=player_embedded&v=p5T81yHkHtI

http://www.youtube.com/watch?feature=player_embedded&v=p5T81yHkHtI
http://www.youtube.com/watch?feature=player_embedded&v=p5T81yHkHtI

Te olete C loengus
11:41:39

Sources

 http://www.dwheeler.com/secure-
programs/

 http://www.ibm.com/developerworks/libra
ry/s-buffer-defend.html

 https://www.securecoding.cert.org/conflue
nce/display/seccode/CERT+C+Coding+St
andard

Te olete C loengus
11:41:39

Posssible problems

 Disruption of work
 Data integrity
 Privilege escalation
 Data leakage

(CIA triad: confidentiality, integrity,
availability)

Te olete C loengus
11:41:39

What Causes Security Issues?

 Lack of skills
 Insecure tools (C language)
 Multi-user and parallel processes are

difficult to predict and think about
 Lazyness
 Time/Money
 There is lack of good programmers
 User is not interested

... ?

Te olete C loengus
11:41:39

Paranoia

 Being paranoid is the foundation of
security

 Think like an attacker
bodyguard analogy

 Presume that the attacker has the ability
to exploit any weaknesses

 The defender must always be defensive,
the attacker only needs one successful
attack

First World War counter analogy here

Te olete C loengus
11:41:39

Guard your inputs

 Input is a lie!

Te olete C loengus
11:41:39

Command line

 Execve() lets the attacker add \0 chars
where not expected

 Setuid/setgid problems

Te olete C loengus
11:41:39

Environment variables

 You have full control over environment
 IFS variable (telling what character

separates the commands in a shell)
 When you use system() function, causes

problems
 Solution: purify the environment; use only

what needed
 (setuid/setgid problems)
 User gets to include random .so files

using LD_PRELOAD (and change it in
~/.environment variable)

Te olete C loengus
11:41:39

Filenames

 Sneaky . .. and / possibilities
 Buffer overrun with PATH_MAX problems
 ../*/../*/../*/../* denial of service when

using glob() function

Te olete C loengus
11:41:39

Passwords

 Problem: how to ask password so that it
does not reach the screen of the user.

 "Solution":

 Connects to "real" terminal /dev/tty , if
cannot, tries stdin ja stderr . Blocks INTR,
QUIT and SUSP commands in terminal.

 Terminal is flushed before and after
password is typed

#include <unistd.h>
char * = getpasswd(char * prompt)

Te olete C loengus
11:41:39

What does getpass() do?

 Prints the prompt
 Goes into noncanonical mode, turns off

echo, restores the terminal state after
function

 Due to lack of thread-safety, and
exclusion from POSIX standard, general
recommendation not to use it. Write
yourself (or find a working solution).

 For important applications the good
practice is to encrypt/hash the password
upon recieval and overwrite the original
buffer.

Te olete C loengus
11:41:39

Encryption: crypt()

 Encrypts using DES (broken) or MD5
(broken); Blowfish or SHA-256 / SHA-512:

 Belief that hash, once calculated cannot
be reversed in a reasonable time.

 salt: if two letters, chooses DES, if MD5,
start the string as 1 + 8 chars, which
end in $ or \0

 For Blowfish etc see manpage; you
change the id

char * crypt(constchar* key, const char* salt);

Te olete C loengus
11:41:39

Salt

 Salting prevents dictionary attacks using
rainbow tables.

 Output being salt + $ (when missing) +
hash

 Salt should be a random string when the
password is stored

 For checking the password, provide the
previous output of crypt() as the salt, and
compare salt to crypt() result. (As $ ends
salt, you can provide the whole result for
salt argument)

Te olete C loengus
11:41:39

Storage of passwords

 Hash is problematic; MD5 has over 9000
million tries per second

 You can calculate the hash repetitively on
existing hashes: try it 100 times to send
attacker away

 The attacker using a GPU will be thwarted
 Don't invent stuff, use the bcrypt library

Te olete C loengus
11:41:39

Stack smashing

 Canary
– Ubuntus uses by default, others not

 Address space randomization (ASLR)

Te olete C loengus
11:41:39

Standard library problems

 Mostly the lack of input length checks

Te olete C loengus
11:41:39

Malloc

 Double free() really problematic
 You can control the behaviour by setting

MALLOC_CHECK 2 environment variable
 After the release, use a macro to set the

pointer to NULL

Te olete C loengus
11:41:39

Non-negative values

 Use an unsigned type

Te olete C loengus
11:41:39

Compilation suggestion

 gcc -Wall -Wpointer-arith -Wstrict-
prototypes -O2

Te olete C loengus
11:41:39

Be paranoid!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

