

Real-time Operating Systems and
Systems Programming

Lecture 2
Understanding Memory (Stack)

Memory

● Processor registers (hidden in C)
● RAM
● Devices (hard disk)
● Internet?
● People??
● Books???

Stack

● Simple data structure
● Efficient implementations
● FILO (as opposed to FIFO)
● Operations: Push, Pop
● Important to us due to call stack
● Often supported in hardware

C implementation
 typedef struct {
 int size;
 int items[STACKSIZE];
 } STACK;

 void push(STACK *ps, int x)
 {
 if (ps->size == STACKSIZE) {
 fputs("Error: stack overflow\
n", stderr);
 abort();
 } else
 ps->items[ps->size++] = x;
 }

 int pop(STACK *ps)
 {
 if (ps->size == 0){
 fputs("Error: stack underflow\
n", stderr);
 abort();
 } else
 return ps->items[--ps->size];
 }

Hardware implementation

● Special stack register (can be read/written)
● We will name it %esp in further examples

● Assembly instructions to manipulate it

The Dreadful Assembly

Short introduction to assembly

● Mainly moves data around (mov series)
● Jumps, conditional jumps (jmp series)
● Arithmetics
● Management (push, pop, call, return)
● Examples from IA32

● Word = 16 bit due to ancient history
● Double word for 32 bits

Registers

● 8 registers for 32bit values
● General purpose: %eax %ecx %edx %ebx

%edi %esi (Historical names, would be simpler)
● Fun registers: %esp %ebp (Stack pointer &

Frame pointer)
● Can be addressed also in smaller segments
● %eax[%ax[%ah[] %al[]]

Aside: C numeric constants

● Decimal: 10; -10
● Octal: 037 0431 (leading 0)
● Hexadecimal: 0xf1 0xdada (leading 0x)
● Unsigned: 10u, 0xafU
● Long: 10l 10L; Short: 10s 10S
● Floating-point: 0.04 4e-2 10.0 1e2

Operands

● Instructions have operands (arguments)
● Immediate

● Constant values
● $1024, $-10, $0xdeadbeef

● Register
● %eax, %al

● Memory
● 24(%eax, %edx, 1) ~ Immediate(reg

b
, reg

i
, scale)

Additional shift

Examples

movl $0x5040, %eax
movl %ebp, %esp
movl (%edi, %ecx), %eax
movl $-17, (%esp)

Stack operations

%eax = 0x123 %edx = 0 %esp = 0x108

pushl %eax

%eax = 0x123 %edx = 0 %esp = 0x104

popl %edx

%eax = 0x123 %edx = 123 %esp = 0x108

Procedures

● Call involves passing both data and control
from one code to another.

● Must store local variables and arguments,
deallocate them on exit

Stack frame

● Uses frame pointer to keep track of previous
frame

● Stack pointer tracks “top” of stack

Image source: Wikipedia

One frame contains

● Address of last %ebp
● Current frame pointer points to it (data accessed in

relation to it)
● Saved registers
● Local variables (out of registers; array; &)
● Any temporary data
● Argument building area
● Return address (only if not active frame)

Transfer of control

● For procedure calls, processor supports the
following instructions:
● call Label / call *Operand – calls procedure
● leave – prepares stack for return
● ret – return from call

1. Prepare stack
2. Call procedure

Call instruction

● Can start executing from an address or a label
● Pushes return address to stack (return address

is next instruction from the call)
● Jumps to called address (= set program

counter to the start of a procedure)

Ret instruction

● Pop an address from stack
● Go to the address (copy it to Program Counter)
● To use properly, stack pointer must point to the

“bookmark” address that call instruction stored.
● For preparation, leave instruction is used

Leave:
movl %ebp, %esp
popl %ebp

note: %ebp == stack frame

Recap

● call pushes return address to stack, jumps

● new procedure saves old stack frame to stack
● Copies current stack pointer to frame pointer
● …
● Copy frame pointer to stack pointer
● Restore old frame pointer
● Return to stored bookmark

Register conventions

● %eax, %edx, %ecx – Caller save
● Procedures can overwrite them as want, but must

restore them after return, as they may get
overwritten

● %ebx, %esi, %edi – Callee save
● Procedures can overwrite them only if they save

them and restore them before returning
● %eax is the return register

What reflects to C?
● Automatic variables live on stack
● Function arguments are copied to stack before

calling (call by value)
● Using pointers as arguments to functions can

make calls by reference
● Uninitialized variables contain garbage
● Pointers to freed stack contain garbage
● Writing over a stack frame pointer is Not Good
● Writing over the return address is worse

Buffer overflow exploitation

● When a buffer overflows, it is possible to write
over the return pointer to point within the buffer
itself

● The buffer gets executed
● Newer C implementations protect stack for

desktop compilation

How to remove variable from stack?

● Easy, declare it as static.
● static int i = 0xf00;

● Moves the variable to heap
● the next lecture will cover this

Nice hack using the stack

● The state of a program is defined by:
● CPU register content (easy to save and restore as

we saw)
● Stack content
● Heap content

● You could save the program state by saving the
above

Long Jump

● setjmp ja longjmp can aid interrupt handling
● setjmp() saves the stack into env buffer, for use

by longjmp() function. The env is usable only
once.

● setjmp() returns 0 on the first call and a different
value on the second call after longjmp() has
been called. It can return "twice"!

#include <setjmp.h>
int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

jmp_buf env;
if ((val=setjmp(env)) == 0)

printf("Now we have set long jump\n");
else

printf("Long jump has returned value
%d\n",val);
.........…
longjump(env, 3);

Long Jump (2)

● longjmp() restores the saved environment. After
longjmp() the program behaves like setjmp()
would have returned the value val. longjmp()
cannot send 0 since it will be replaced with 1.

void longjmp(jmp_buf env, int val);

long.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

