
Lecture #9
Verification of parallel programs

ITI8531: Software synthesis and verification
Spring 2017

J.Vain

What is a prallel program?

 Parallel programs are compositions of sequential
processes (threads).

 Processes are implemented as sequential programs
(possibly non-deterministic).

 Processes communicate using 2 mechanisms:
 shared variables;
 message passing.

What makes verifying parallel
programs so special?

 Observation:
 The behaviour of whole system does not depend only on the

processes alone
 but interaction matters, i.e.

 the communication mechanism between processes
 and the order (timing) of how the processes interact

 Thus, to verify a parallel program also communication
must be addressed explicitly by proof rules

Why interleaving of processes
matters? An example

 What is the result of executing a simple parallel program?
 Process 1:: X := 0; Y := X + 1;
 Process 2:: X := 1; Y := X + 2;

 Possible interleaving of execution steps:
 <P1.1, P1.2, P2.1, P2.2>  {X=1, Y=3}
 <P2.1, P2.2, P1.1, P1.2>  {X=0, Y=1}
 <P1.1, P2.1, P2.2, P2.1>  {X=1, Y=2}
 ...

 Due to the interleaving the number of possible final results
grows exponentially in the length of processes.

General verification strategy

 We prefer compositional HL also when verifying parallel programs.

 Processes are proven locally at first and whole system thereafter.

 To verify local correctness we need assertions about how
communication affects processes locally (extra axioms about it).

 The communication assertions need to be generated and verified:

 the interference test (IFT) if communication via shared variables;

 the co-operation test (COOP) if communication via message passing.

 After local proofs are done using HL and communication axioms
whole system is verified using parallel composition rule.

Parallel processes are generally non-
deterministic sequential programs

 We use E. Dijkstra’s Guarded Command Language (GCL) for
programming non-deterministic sequential processes

 GCL includes non-deterministic counterparts of
 if - command and
 while – command

Syntax of GCL

 Pvar – set of program variables:
 x ∈ Pvar

 VAL- set of possible values including natural numbers:
 a ∈VAL

 Arithmetic expressions:
 e ::= a | x | (e1 + e2) | (e1 - e2) | (e1 ⋅ e2)

 Boolean expressions:
 b ::= e1 = e2 | e1 < e2 | ¬b | b1 ∨ b2

GCL

 Commands:
C ::=

x :=e
| C1; C2

| if []ni=1 bi → Ci fi

| do []ni=1 bi → Ci od

GCL (continued)

 Assignment:
 x := e
 assigns value of vectore to the variable vectorx

 Sequential composition:
 C1 ; C2
 first execute C1 and continue with the execution of C2 if and

when C1 terminates.

GCL (continued)

 Guarded command (symbolically):
if []ni=1 bi → Ci fi

 Each alternative is written (explicitly) in the program
if b1 → C1
[] b2 → C2
…

[] bn → Cn
fi

 Meaning:
 abort if none of the guards bi evaluates to true;
 otherwise, nondeterministically select one of the bi that

evaluates to true and execute the corresponding Ci .

GCL (continued)

 Iteration:

do []ni =1 bi → Ci od

 repeats execution of guarded command Ci as long as at least
one of the guards bi evaluates to true;

 when none of the guards evaluates to true, the iteration
terminates (acts like skip).

GCL inference rules

Guarded assignment rule:
⊢ P ∧ b ⇒ Q[e/x]

⊢{P} 〈b → x:=e〉 {Q}

General guarded command rule:
⊢ ∀i ∈{1, … , n}: {P ∧ bi } Ci {Q }
⊢ {P} if []ni=1 bi → Ci fi {Q}

GCL inference rules (continuation)

 Non-deterministic loop

⊢P ⇒ I ⊢ ∀i=1,n : {I ∧ bi} Si {I} ⊢ (I ∧¬ bG) ⇒ Q
⊢ {P} do {I} [n

i=1 bi → Si] od {Q}

where bG ≅ \/n
i=1 bi

I - invariant

Parallel programming language
with shared variables

Command

Parallel programming language
with shared variables

commands

Execution model: atomicity
and interleaving

What is the value of x after the execution of the following program?
(x := 0; x := x +2) || (x := 1; x := x +3)

Interleaving semantics: only one atomic action of one of the processes that is not
in the waiting state is executed at a time. It is called interleaving of atomic actions.

It can be either 2, 4, 5 or 6.

Interference of processes
 Annotation specifies the constraint what program variables have to satisfy

when the execution has reached the place/state where the annotation is
written.

 It is difficult to locate the place for annotations in parallel programs because
the global annotations should take into account all possible interleavings.

 It is not enough to prove the correcness of processes locally.
 Local annotations suffice only if we can prove that other processes do not

violate the validity of assertions in the process.

Interference freedom

Definition:
The annotated triples {pi} ASi {qi} i =1, … , n are interference free iff for
all i, j ∈ {1, … , n }, i ≠ j, and for every assertion r in any {pj} ASj {qj} we
have that if Si is either a command

x := e

or
await b then S0 end

with precondition ri in parallel process {pi} ASi {qi} then
{ri /\ r} Si {r}.

SVL parallel composition rule

A1⊢{P1} S1 {Q1} A2⊢{P2} S2 {Q2} ⊢P⇒P1 ∧ P2 ⊢Q1∧Q2⇒Q IFT(S1||S2)
⊢ {P}[{P1} S1 {Q1} || {P2} S2 {Q2}] {Q}

IFT(S1||S2) – processes S1 and S2 are Interference Free
IFT - Interference Freedom Test

Interference freedom test (IFT):
 Let S1 || S2 .
 For each pair of annotated assignments {P1} V1:=E1 {Q1} and

{P2} V2:=E2 {Q2} where {P1} V1:=E1 {Q1} ∈ A(S1) and {P2} V2:=E2 {Q2}∈
A(S2), interference test consists of 4 proof obligations (where A(S) denotes
annotated program S):
 S1 does not violate the local precondition P2 of S2:

{P1 ∧ P2} V1 := E1 {P2}
 S1 does not violate the local postcondition Q2 of S2:

{P1 ∧ Q2} V1:= E1 {Q2}
 S2 does not violate the local precondition P1 of S1:

{P2 ∧ P1} V2:= E2 {P1}
 S2 does not violate the local postcondition Q1 of S1:

{P2 ∧ Q1} V2:=E2 {Q1}

Example
Prove that { x = 0 } x := x + 1 || x := x + 2 { x = 3 }

{x=0 ∨ x=2}

{x = 0 ∨ x = 1}

{x=1 ∨ x=3}

{x = 2 ∨ x = 3}

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

Add the annotations:

The global precondition implies the local preconditions of the processes and
the local postconditions imply the global postcondition:

˫ (x = 0) ⇒ (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)
˫ (x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3) ⇒ (x = 3)

Each process has local specification:
˫ {x = 0 ∨ x = 2} x := x + 1 {x = 1 ∨ x = 3}
˫ {x = 0 ∨ x = 1} x := x + 2 {x = 2 ∨ x = 3}

Example: interference test
{x= 0 ∨ x = 2}

{x = 0 ∨ x = 1}

{x = 1 ∨ x = 3}

{x = 2 ∨ x = 3}

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

P1 does not interfere to P2 local precondition
˫ {(x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)} x := x + 1{ x = 0 ∨ x = 1}

P1 does not interfere to P2 local postcondition
˫ {(x = 0 ∨ x = 2) ∧ (x = 2 ∨ x = 3)} x := x + 1{ x = 2 ∨ x = 3}

P2 does not interfere to P1 local precondition
˫ {(x = 0 ∨ x = 1) ∧ (x = 0 ∨ x = 2)} x := x + 2{ x = 0 ∨ x = 2}

P2 does not interfere to P1 local postcondition
˫ {(x = 0 ∨ x = 1) ∧ (x = 1 ∨ x = 3)} x := x + 2{ x = 1 ∨ x = 3}

A problem
We cannot prove

˫ { x = 0 } x := x + 1 || x := x + 1 { x = 2 }
because VCs

˫{(x = 0 ∨ x = 1)} x := x + 1{ x = 1 ∨ x = 2}
˫{(x = 0 ∨ x = 1)} x := x + 1{ x = 1 ∨ x = 2}

are not interference free, i.e:
{(x = 0 ∨ x = 1) ∧ (x = 0 ∨ x = 1)} x := x + 1{ x = 0 ∨ x = 1}

and the conjunction of local postconditions does no imply postcondition
{ x = 1 ∨ x = 2} ∧ { x = 1 ∨ x = 2} ⇒ { x = 2 }

˫

˫

Intermediate remarks

 Proving the properties of parallel programs is computationally hard
 There is an exponential number of verification conditions (VC) one for

every command in all processes for every assignment
 Given proof method is not compositional for parallel composition
 Not possible to verify ||-composition of processes knowing only the pre-

and postconditions of the local processes.
 If the specification is proved for the whole parallel program then it

is possible to compose it sequentially to other programs looking
only at pre- and postcondition.

Message passing parallel
programs

We have studied the formal (syntactic and) verification of
- non-deterministic programs – generalization of deterministic

sequential programs;
- parallel programs with shared variables - an abstraction of multi-

threaded programs (in multiprocessor computer).

We will look next parallel programs with message passing - an
abstraction of distributed (networked) programs.

Communication primitives of parallel
programs
 We have communication primitives C!e and C?x sending a

value to channel C and reading the value from C.
Notations
C ∈ CHANNEL;
e – arithmetic expression on the local variables of the process;
x – local variable;
C!e – the value of an expression e is sent to channel C;
C?x – a value is read from channel C and assigned to variable x.

Synchrony!
Commands C!e and C?x are executed synchronously.

Parallel programs with message
passing

Command

if []ni=1 bi → Si fi  []ni=1 bi → Si
do []ni=1 bi → Si od  ([]ni=1 bi → Si)

We use here sligthly different notation

Communication commands

command
command

command
command

command

Parallel programs with message
passing

commands

Syntactic restrictions

Parallel processes do not share program variables!

Recall: proof method for parallel
programs with shared variables

 The method of Owicki and Gries
 First, a local correcness proof is given for each process
 a consitency check - interference test is applied to the local

proofs.
 Similar two-stage method is applicable to parallel processes with

message passing, but the cooperation tests are verified instead
of interference tests

DML parallel composition

A1 ⊢ {P1}S1{Q1} A2 ⊢ {P2} S2 {Q2} ⊢P ⇒ P1 ∧ P2 ⊢Q1 ∧ Q2 ⇒ Q Coop(A1 A2)
⊢ {P}[{P1} S1 {Q1} || {P2}S2 {Q2}]{Q}

non-deterministic choice
∀i= 1, l: A i ⊢ {P} Si {Q},

A ⊢{P} [l
i=1 Si] {Q} A = def ∪l

i=1 A i

Cooperation test Coop(A1 A2)

Coop(A1 A2) establishes the validity of sets of axioms A1 and A2 about the
communication correctness:
Assuming:
 there is a matching pair of communication operations over channel C, i.e.
C! E and C?v where E is an expression and v is a variable, the matching pair has local
pre- and post-conditions:
 Si: ... {Pi'} C!E {Qi'}.... and
 Sj: ... {Pj"} C?v {Qj"}... respectively,
then the test Coop() for this pair means proving the validity of tripple
 |− {Pi' ∧ Pj"} v:= E {Qi' ∧ Qj"}. (*)

When the tripple (*) is proved correct then {Pi'} C!E {Qi'} and {Pj"} C?v {Qj"} are
treated respectively as axioms ai

k ∈ Ai and aj
k ∈ Aj in the local proofs of processes Si

and Sj where these tripples occur.

Example

local annotations

cooperation tests

parallel composition

Example of using auxiliary variables
(for identifying matching pairs)

Assignment
Show that

{true} S1 || S2 || S3 {x = u},
where
S1 ≡ C!x,
S2 ≡ C?y; D!y
S3 ≡ D?u

Assignment

	Lecture #9�Verification of parallel programs
	What is a prallel program?
	What makes verifying parallel programs so special?
	Why interleaving of processes matters? An example
	General verification strategy
	Parallel processes are generally non-deterministic sequential programs
	Syntax of GCL
	GCL
	GCL (continued)
	GCL (continued)
	GCL (continued)
	GCL inference rules
	GCL inference rules (continuation)
	Parallel programming language with shared variables
	Parallel programming language with shared variables
	Execution model: atomicity and interleaving
	Interference of processes
	Interference freedom
	SVL parallel composition rule
	Interference freedom test (IFT):
	Example
	Example: interference test
	A problem
	Intermediate remarks
	Message passing parallel programs
	Communication primitives of parallel programs
	Parallel programs with message passing
	Communication commands
	Parallel programs with message passing
	Syntactic restrictions
	Recall: proof method for parallel programs with shared variables
	DML parallel composition
	Cooperation test Coop(A1 A2)
	Example
	Example of using auxiliary variables (for identifying matching pairs)
	Assignment
	Assignment

