Total Correctness

Lecture #8:
Juri Vain
05.04.2018

Slides adapted from
Mike Gordon'’s course

Lecture 8:
Total correctness

Total Correctness

¢ We introduced a stronger kind of specification:
a total correctness specification

e A total correctness specification [P] C [Q] is
true if and only 1if

¢ Whenever (' is executed in a state satisfying P, then
the execution of (' terminates

e After (' terminates () holds

Summer course at DA-IICT, 2017

Termination of WHILE command

e With the exception of the WHILE-rule, all the
axioms and rules described so far are sound for
total correctness as well as partial correctness

e If the WHILE-rule were true for total correctness,

then /\

~ [1) wHILE(T)DO X:=0 [T A(T) because

The WHILE-rule

F {PAS} C{P}
= {P} WHILE S DO C {P A-S}

Summer course at DA-IICT, 2017

Rules for Non-looping Commands

e Replace { and } by [and |, respectively, in:
e Assignment axiom (see below)

e Consequence rules

Conditional rules

Sequencing rule

Block rule

e The following is a valid derived rule

- {P} C 1}
- [Pl C Q]

If ' contains no WHILE-commands

Summer course at DA-IICT, 2017

Termination

e The relation between partial and total correct-
ness 1s informally given by the equation

Total correctness =
Termination + Partial correctness

e This informal equation can be represented by
the following two formal rule of inferences

- 1P} C{Q), - PO T
- [Pl C Q]
- P C Q)

- {P} O 1@}, - [Pl CT]

Summer course at DA-IICT, 2017

Total Correctnes of Assignment

e Assignment axiom for total correctness
- [PLE/V]] V:=E [P]

e Note that the assignment axiom for total cor-
rectness states that assignment commands al-
ways terminate

Summer course at DA-IICT, 2017

WHILE-rule for total correctness

e WHILE-commands are the only commands in our
little language that can cause non-termination

e They are thus the only kind of command with a non-
trivial termination rule

e The idea behind the WHILE-rule for total cor-
rectness 1s

e To prove WHILE S DO C' terminates

e One must show that some non-negative quantity de-
creases on each iteration of C

e This decreasing quantity is called a variant

Summer course at DA-IICT, 2017

WHILE-rule for total correctness

e In the rule below, the variant is £, and the fact
that it decreases is specified with an auxiliary
variable n

® An extra hypothesis, - PAS = E > 0, ensures
the variant is non-negative

WHILE-rule for total correctness

F [PASA(E=n)]C[PAE<n), F PAS=E>0
F [P] WHILE S DO C [P A —S]

where £ is an integer-valued expression and n is an iden-
tifier not occurring in P, C, S or E.

Summer course at DA-IICT, 2017

Derived Rules

e Multiple step rules for total correctness can be
derived in the same way as for partial correct-
ness

e The rules are the same up to the brackets used

e Same derivations with total correctness rules replac-
ing partial correctness ones

Summer course at DA-IICT, 2017

Derived WHILE-rule

® The derived While rule is slightly different to

the partial correctness version

¢ The extra information about the variant is needed

WHILE-rule for total correctness

F P=R
- RANS=FE>0
F RASS = Q
F [RASA(E=n)] C[RA(E <n)
- [P] WHILE S DO C' [Q]

where R Is invariant

Summer course at DA-IICT, 2017

Example

e We show

- [Y > 0] WHILE Y<R DO BEGIN R:=R-Y; Q:=Q+1 END [T]

e Take
P =Y>0
S = Y<R
E = R
(' = BEGIN R:=R-Y Q:=Q+1 END

e We want to show F [P] WHILE S DO C' [T]

Summer course at DA-IICT, 2017

Verification Conditions

e The idea of verification conditions is easily ex-
tended to deal with total correctness

e To generate verification conditions for WHILE-
commands, it is necessary to add a variant as

an annotation in addition to an invariant

e No other extra annotations are needed for total
correctness

e We assume this is added directly after the in-
variant, surrounded by square brackets

Summer course at DA-IICT, 2017

WHILE annotation

e A correctly annotated total correctness specifi-
cation of a WHILE-command thus has the form

[P] WHILE S DDC Q]

where R is the invariant and £ the variant

e Note that the variant is intended to be a non-

negative expression that decreases each time
around the WHILE loop

e The other annotations, which are enclosed in
curly brackets, are meant to be conditions that
are true whenever control reaches them

Summer course at DA-IICT, 2017

Verification Conditions

The verification conditions generated from
[P] WHILE S DO {R}[E] C [Q]
are
()P = R
(i) R AN =S = @
(i) R AN S = E>0
(iv) the verification conditions generated by

R NS AN (E=n)]C[R AN (E<n)

where n is a variable not occurring in

P, R, E,C, S or (.

Summer course at DA-IICT, 2017

Example of verification ssee
conditions -

® The verification conditions for

R=X A Q=0]

WHILE Y<R DO {X=R+YxQ}[R]
BEGIN R:=R-Y; Q=Q+1 END

X = R+(YXQ) A R<Y]

(i) R=X A Q=0 = (X = R+(YxQ))
(ii) X = R+YxQ A =(Y<R) = (X = R+(YxQ) A R<Y)

(iii) X = R+YxQ A Y<R = R>0

together with the verification condition for

X = R+(YxQ) A (Y<R) A (R=n)]
BEGIN R:=R-Y; Q:=Q+1 END
X=R+(YxQ) A (R<n)]

Summer course at DA-IICT, 2017

Example

e The single verification condition for

X = R+(YxQ) A (Y<R) A (R=n)]
BEGIN R:=R-Y; Q:=Q+1 END
X=R+(YxQ) A (R<n)]

.. X = R+(YxQ) A (Y<R) A (R=n) =
(V) oy R+ (rx @+ 1)) A ((R-Y)<n)

e But this isn’t true
e take Y=0

e To prove R-Y<n we need to know Y>0

Summer course at DA-IICT, 2017

	 Total Correctness
	Total Correctness
	Termination of WHILE command
	Rules for Non-looping Commands
	Termination
	Total Correctnes of Assignment
	WHILE-rule for total correctness
	WHILE-rule for total correctness
	Derived Rules
	Derived WHILE-rule
	Example
	Verification Conditions
	WHILE annotation
	Verification Conditions
	Example of verification conditions
	Example

