

Real-time Operating Systems and
Systems Programming

Summary

Grades

● Programming project(s) (40%)

Huffman
Labs

● Exam (60%)
Terminology, some functions, code reading,

coding on paper

Exam

● 2 programming tasks – think of practice lessons
● "what does this function do?" – 2-3 sentences

max
● operator precedence puzzle
● memory layout puzzle (pointer/array things)
● some general questions

Te olete C loengus
06:26:12 PM

C keywords

• Types
– char double enum float int long short struct union
void

• Parameters to variables
– auto const extern register signed static unsigned
volatile

• Flow control
– break case continue default do else for goto if return
switch while

• Operators
– sizeof, typeof

Te olete C loengus
06:26:12 PM

Operator precedence
() [] -> .
! ~ ++ -- + - * & (type) sizeof
* / %
+ -
<< >>
< <= > >=
== !=
&
^
|
&&
||
? :
= += -= *= /= %= &= ^= |= <<= >>=
,

>>
<<
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
<<
<<
>>

Variables

● Name to an address.
● Type says amount of memory to reserve
● Must be declared before use

Real-Time Systems

● Hardware or software which has a time
constraint for reactions

● For our purposes, also embedded systems
● What would be the difference?

Characteristics

● Specified limit on
system response
latency

● Event-driven
scheduling

● Low-level
programming

● Software coupled to
special hardware

● Volatile Data
● Multi-tasking

implementation
● Unpredictable

environment
● Runs continously
● Life-critical

applications

Terminology

● System: black box with n inputs and m outputs
● Response time: time between presentation of a

set of inputs and the appearance of the
corresponding outputs

● Events: Changes of state which cause changes
in flow-of-control of a progam
● Synchronous: events occur at predictable times
● Asynchronous: events interrupt flow-of-control

State vs Event based

● State based:
● System constantly reads system inputs and reacts

to their combination

● Event based
● System is in standby and events “wake” it to make it

work

Deterministic RTS

● A deterministic RTS: you can determine a
unique set of outputs and next state from a
given set of possible states and inputs.

Real time Correctness

● Correctness depends on result and the time of
delivery.

● Soft – missing some deadlines not a problem
● Firm – missing deadline: result worthless, but

not a problem
● Hard – missing a deadline makes result

worthless and is a problem

Static Predictability

● RT system: satisfying time constraints
● Assumptions about workload and sufficient

resources
● Certified at design time, that all constraints will be

met

● For static systems, 100% guarantees can be
given at design time
● Requires immutable workload and system

resources
● System must be re-certified on any change

Dynamic Predictability

● Dynamic systems: not statically defined
● Systems configurations might change
● Workload might change

● Dynamic predictability
● Under appropriate assumptions (sufficient

resources)
● Tasks will satisfy time contstraints

Latency minimization

● Latency is the time between an event and the
system's reaction to it.

● We want to minimize latencies
● For different applications, different latencies are

required.
● 10 ms might be barely enough (probably a

dedicated system)
● 500 ms might be enough (might use an external

kernel)

Multiple Requirements

● Real-time
● Power constraints
● Size constraints
● Cost limits
● Security requirements
● Fault tolerance

● Often conflicting

Operating systems

● Interface between hardware and software
● Provide services for applications
● Provide an abstraction layer for hardware

What services?

● Processes
● Multitasking
● Interrupts
● Memory management

● Virtual memory

● Protected/supervisor
mode

● Disk & Files

● Booting the computer
● Device drivers
● Networking
● Users / authentication
● Graphical UI

What applies for Real-time?

Usually not included in RTOS

● Paged & swappable virtual memory
management

● Disk filing system
● Full networking facilities
● Intertask security
● Multi-user support
● GUI

More power (and responsibility)

● Interrupts can be masked
● Can used only if max. int. latency (by specification)

longer than longest critical section path

● Memory allocation
● Fixed-size blocks
● Re-entrant core libraries (allocation on stack)

Other services

● HW initialization
● Real-time clock

management
● Critical resource

protection
● Intertask

communication
● Intertask

synchronization

● I/O management
● Multiple interrupt

servicing
● Memory allocation

and recovery
● Assistance for

debugging

POSIX

● POSIX (Portable Operating System Interface
[for UniX])

● Standard for Unix, defines core specifications-
command-line, shell, some programs, basic
IO.Threading API.

Posix IO

● Program has two inputs:
● Command line arguments to main()
● Standard input (keyboard connected to file by

default)

● Two outputs
● Standard output (connected to terminal by default)
● Standard error (connecterd to terminal by default)

● Standard streams can be redirected

I/O for RT Systems

● Can be complex
● Desktop computing hides the fact successfully

● Need to understand
● Port address mappings
● Register functionalities

Hardware access

● Done by accessing HW ports & registers
● Memory mapped
● I/O mapped

Memory mapped

● I/O registers behave like memory locations

IO Mapped

● More bus control lines, extra instructions
● Independent address space for I/O ports
● Intel (IN & OUT instructions)
● Better caching: we need to read “raw data” for

I/O
● C lang extensions: inb() outb() functions.

Programmers view of ports

● For direct I/O:
● Base address of I/O chip
● Memory map and function of its registers

Need to Identify:
Command
Status
Data

PC I/O mapped port addresses

Port polling

● Poll until data arrives
● Problem: CPU fast, devices slow
● Dedicated (spin) vs intermittent (timed) polling

Blocking & nonblocking

● IO operations wait until complete: blocking
● Simple: read only when data waiting (kbhit() -

DOS/Win)
● Possible to turn off blocking & buffering for

keyboard
● fd = open(“/dev/ttyS0”, O_RDWR | O_NOCTTY

| O_NONBLOCK);
● Ioctl() & fcntl()

Blocking

● Device blocking often necessary for fair
scheduling

● Threading possible
● select() function for multiple sockets.

Interrupts

● Interrupt method good for occasional attention
● Requires hardware support, quite common

CPU level

● On every instruction, interrupt line is checked
● On interrupt, selected service routine executed

after saving the instruction pointer
● Gets restored afterwards.
● Response in 10μs

System diagram

Source detection

● Often only one interrupt line
● How to find the source?

Polling

● Slow since all devices must be polled
individually

● Does not require extra hardware
● Adequate for small number of devices

Vector interrupts

● Interrupt Vector Registers (IVR) in devices
● Motorola Mc68000 family

PIC interrupts

● Needs Programmable Interrupt Controller (PIC)
● PC method. Centralized prioritizing encoder.

Actions

● Interrupt
● CPU saves program counter (PC) & CPU

status register to stack
● Entry address for Inter. Service Routine (ISR)

from Interrupt Vector Table (IVT), written to PC
● ISR starts

ISR

● Store register contents to stack
● Verify source (test device flag for example)
● Remove cause to prevent further interruption
● Reinitialize device?
● …
● POP saved registers from stack, RTE

instruction to restore Instruction Pointer &
status

Memory

● Processor registers (hidden in C)
● RAM
● Devices (hard disk)
● Internet?
● People??
● Books???

Stack

● Simple data structure
● Efficient implementations
● FILO (as opposed to FIFO)
● Operations: Push, Pop
● Important to us due to call stack
● Often supported in hardware

C implementation
 typedef struct {
 int size;
 int items[STACKSIZE];
 } STACK;

 void push(STACK *ps, int x)
 {
 if (ps->size ==
STACKSIZE) {
 fputs("Error: stack
overflow\n", stderr);
 abort();
 } else
 ps->items[ps->size++]
= x;
 }

 int pop(STACK *ps)
 {
 if (ps->size == 0){
 fputs("Error: stack
underflow\n", stderr);
 abort();
 } else
 return ps->items[--ps-
>size];
 }

Hardware implementation

● Special stack register (can be read/written)
● We will name it %esp in further examples

● Assembly instructions to manipulate it

Short introduction to assembly

● Mainly moves data around (mov series)
● Jumps, conditional jumps (jmp series)
● Arithmetics
● Management (push, pop, call, return)
● Examples from IA32

● Word = 16 bit due to ancient history
● Double word for 32 bits

Registers

● 8 registers for 32bit values
● General purpose: %eax %ecx %edx %ebx

%edi %esi (Historical names, would be simpler)
● Fun registers: %esp %ebp (Stack pointer &

Frame pointer)
● Can be addressed also in smaller segments
● %eax[%ax[%ah[] %al[]]

Aside: C numeric constants

● Decimal: 10; -10
● Octal: 037 0431 (leading 0)
● Hexadecimal: 0xf1 0xdada (leading 0x)
● Unsigned: 10u, 0xafU
● Long: 10l 10L; Short: 10s 10S
● Floating-point: 0.04 4e-2 10.0 1e2

Stack operations

%eax = 0x123 %edx = 0 %esp = 0x108

pushl %eax

%eax = 0x123 %edx = 0 %esp = 0x104

popl %edx

%eax = 0x123 %edx = 123 %esp = 0x108

Stack frame

● Uses frame pointer to
keep track of previous
frame

● Stack pointer tracks
“top” of stack

Image source:
Wikipedia

One frame contains

● Address of last %ebp
● Current frame pointer points to it (data accessed in

relation to it)

● Saved registers
● Local variables (out of registers; array; &)
● Any temporary data
● Argument building area
● Return address (only if not active frame)

Transfer of control

● For procedure calls, processor supports the
following instructions:
● call Label / call *Operand – calls procedure
● leave – prepares stack for return
● ret – return from call

1. Prepare stack
2. call procedure
3. Profit

Call instruction

● Can start executing from an address or a label
● Pushes return address to stack (return address

is next instruction from the call)
● Jumps to called address (= set program

counter to the start of a procedure)

Ret instruction

● Pop an address from stack
● Go to the address with program counter
● To use properly, stack pointer must point to the

“bookmark” address that call instruction stored.
● For preparation, leave instruction is used

Leave:
movl %ebp, %esp
popl %ebp

note: %ebp == stack frame

Recap

● call pushes return address to stack, jumps

● new procedure saves old stack frame to stack
● Copies current stack pointer to frame pointer
● …
● Copy frame pointer to stack pointer
● Restore old frame pointer
● Return to stored bookmark

Register conventions

● %eax, %edx, %ecx – Caller save
● Procedures can overwrite them as want, but must

restore them after return, as they may get
overwritten

● %ebx, %esi, %edi – Callee save
● Procedures can overwrite them only if they save

them and restore them before returning

● %eax is the return register

What reflects to C?
● Automatic variables live on stack
● Function arguments are copied to stack before

calling (call by value)
● Using pointers as arguments to functions can

make calls by reference
● Uninitialized variables contain garbage
● Pointers to freed stack contain garbage
● Writing over a stack frame pointer is Not Good
● Writing over the return address is worse

Buffer overflow exploitation

● When a buffer overflows, it is possible to write
over the return pointer to point within the buffer
itself

● The buffer gets executed
● Newer C implementations protect stack for

desktop compilation

How to remove variable from stack?

● Easy, declare it as static.
● static int i = 0xf00;

● Moves the variable to heap

Te olete C loengus
06:26:12 PM

Long Jump

 setjmp ja longjmp can aid interrupt
handling

 setjmp() saves the stack into env buffer,
for use by longjmp() function. The env is
usable only once.

 setjmp() returns 0 on the first call and a
different value on the second call after
longjmp() has been called. It can return
"twice"!

#include <setjmp.h>
int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

Te olete C loengus
06:26:12 PM

jmp_buf env;
if ((val=setjmp(env)) == 0)

printf("Now we have set long jump\n");
else

printf("Long jump has returned value
%d\n",val);
.........…
longjump(env, 3);

Long Jump (2)

 longjmp() restores the saved
environment. After longjmp() the program
behaves like setjmp() would have
returned the value val. longjmp() cannot
send 0 since it will be replaced with 1.

void longjmp(jmp_buf env, int val);

Heap

● Section of memory for dynamic structures
● Bounded by brk pointer in kernel
● Function for allocation and deallocation:

void *sbrk()
● Normally not used directly

alloc(), malloc(), calloc(), free()
● Allocators divide heap into blocks

Why dynamic allocation?

● Programs often know the amount of memory
needed and sizes for data structures runtime

● RTOS note: you might still prefer static
allocation for predictability

Constraints for allocators

● Handling arbitrary request sequences
● Making immediate responses for requests
● Use only heap
● Block alignment must be kept
● Cannot modify allocated blocks

Fragmentation problem

● Allocation and deallocation sequences can
result in “holes”.
● Internal fragmentation: the holes within memory

blocks themselves
● External fragmentation: happens when there would

be enough free memory for a block, but a single
block cannot hold it.

Implementation

● Most naïve: just allocate, never reuse
● More clever:

● Organize free blocks
● Deal with placement of blocks
● Splitting of blocks
● Joining of blocks

Organizing blocks

● Implicit free list
● Blocks have headers which include

● Block size
● Allocated/Free field

● Header size: 1 word
● Return the pointer to content, use header

internally

Header

● Due to alignment, the block sizes are multiple
of 8
● 3 lowest order bits are free!
● Last bit used for free/allocated

● Terminating header with size 0
● “Contents” are located on double word

alignment boundaries
● We have minimum block size

Where to place?

● When searching for a free block, one can have
policies for placement:
● First fit – end of list is often free; fragments
● Next fit – spreads allocation; fragments worse
● Best fit – good, but slower

Should we split?

● Option to use entire block
● Or split
● If the fit is “good”, do not split

How to get free memory?

● Ask for more (mmap() or sbrk())
● Merge adjacent blocks upon freeing

● Can also be done when needed

Merging

● Merging next block is simple: just add
● How to find the previous block?

● Boundary tags (block footer)
● Block header has 2 free bits, use one to show that

the previous block is free (then only free blocks
have footers)

Implementation details

● Initialize block list
● Decide policies
● Blocks may behave like data structures (linked

or double linked lists)
● For faster allocation, keep free lists
● Segregation of free lists (see next)

Simple Segregation

● For memory storage, a memory class will store
blocks up to size X (malloc({17-32}) → 32)

● If new memory is needed, allocate a page
● Split it into equal blocks sized according to the

storage class
● Do not merge blocks
● Link them into free list
● Problems: extreme fragmentation

(sounds like a grenade)

Segregated fit

● Allocator has an array of free lists, according to
size classes

● Allocate according to class, first fit
● Split if needed
● If not found, search larger classes or ask more
● Thought to work well since GNU malloc()

behaves like this

Array memory management

● Dynamically defined 2d array needs 2
allocations with malloc() and some tricky
pointer initialization

Te olete C loengus
06:26:12 PM

Fixed 2d array

 Stack allocation
Allocation: int fixed[50][100];

 Access: fixed[5][9] = 1; /* või */
fixed[0][5*100+9] = 1; /* või */
fixed[1][4*100+9] = 1; /* jne */

 Initialization:
for(i=0;i<50;i++) for(j=0;j<100;j++) fixed[i][j] = 0; /*

slooow */

int *ptr = fixed[0]; int *end = fixed[49]+99; *end = 0;
while(ptr != end) *ptr++=0;

 Passing to a function:
Prototype: void func(int fixed[50][100]);

Te olete C loengus
06:26:12 PM

Dynamic 2d array

 Stored in heap.
int **dynamic;
dynamic = (int**)malloc(sizeof(int*)*50);
dynamic[0] = (int*)malloc(sizeof(int)*50*100);
for (i=1;i<50;i++) dynamic[i]=dynamic[i-1]+100;

dynamic[5][9] = 1; /* või */
dynamic[0][5*100+9] = 1; /* või */
dynamic[1][4*100+9] = 1; /* jne... */

int *ptr = dynamic[0];
int *end = dynamic[49] + 99; *end = 0;
while (ptr !=end) *ptr++=0;

func(int** vec);

Allocation

Access

Initialization

Prototyp
e

Te olete C loengus
06:26:12 PM

Dynamic 2d array

 Stored in heap.
int **dynamic;
dynamic = (int**)malloc(sizeof(int*)*50);
dynamic[0] = (int*)malloc(sizeof(int)*50*100);
for (i=1;i<50;i++) dynamic[i]=dynamic[i-1]+100;

dynamic[5][9] = 1; /* või */
dynamic[0][5*100+9] = 1; /* või */
dynamic[1][4*100+9] = 1; /* jne... */

int *ptr = dynamic[0];
int *end = dynamic[49] + 99; *end = 0;
while (ptr !=end) *ptr++=0;

func(int** vec);

Allocation

Access

Initialization

Prototyp
e

Trap & System calls

● Processors provide syscall n – trap instruction
● System calls encode arguments, execute

syscall to run service n
● Then system call decoded & executed on

kernel level
● Seem identical to normal functions to

programmer
● man syscalls for complete list

Signals

● Interface to interrupts & other conditions on
user level

● Sent for 2 reasons:
● Kernel has detected an event such as divide-by-

zero error, illegal memory access etc
● A process uses kill() system call to send a signal.

Can be sent to process itself (shortcut: raise()).

Life of a signal

● Pending signal – signal was sent, not received
● At most one pending signal of any single type for a

process, others discarded

● Blocked signals wait
● Ignored signals are discarded
● Other signals are delivered to the process

(only once).

Received signal

● Each signal has predefined default action:
● Process terminates
● Process termiantes and dumps core
● Process stops until restarted by SIGCONT signal
● Process ignores the signal

● Process continues where it was.
● Unless a system call was interrupted, which

sometimes is an error

Signal handling issues

● Pending signals are blocked while handling the
same type of signal.

● Pending signals are not queued: if one SIGINT
is already pending, other is discarded

● System calls are interrupted on some systems
(read(), wait(), accept(), set errno to EINTR)

● For more portable signal handling sigaction() is
defined in Posix-compilant systems

Blocking signals

● Processes can explicitly block and unblock
signals with sigprocmask() function.
● sigprocmask(), sigemptyset(), sigfullset(),

sigaddset(), sigdelset(), sigismember() - returns 1 if
member, 0 if not, -1 on error

Signal handling patterns

● Make the handler as small as possible, possibly
changing only one global variable

● Block some of the signals during handling
● Handler which quits might do only cleanup,

then re-assign default action to current signal,
then raise() the same signal again.

Definition of Thread

● A thread is a unit of execution, associated with
a process, with its own thread ID, stack, stack
pointer, program counter, condition codes, and
general-purpose registers.

● Multiple threads associated with a process run
concurrently in the context of that process,
sharing its code, data, heap, shared libraries,
signal handlers, and open files.

Process vs Thread

● Process – unit of resource ownership:

● a virtual address space which holds the process image.
● protected access to processors, other processes, files, and

I/O resources.

● Thread – unit of dispatching:

● Has an execution state (running, ready, etc.)
● Saves thread context when not running
● Has an execution stack and some per-thread static storage

for local variables
● Has access to the memory address space and resources of

its process

Benefits of using threads instead of processes

● Properly implemented, threads take:
● Less time to create a new thread than a process, because the newly

created thread uses the current process address space.

● Less time to terminate a thread than a process.

● Less time to switch between two threads within the same process, partly
because the newly created thread uses the current process address
space.

● Less communication overheads -- communicating between the threads
of one process is simple the threads share almost everything: address
space, in particular. So, data produced by one thread is immediately
available to all the other threads.

Benefits of multi-threading
● Improve application responsiveness
● Use multiprocessors more efficiently
● Improve program structure
● Use fewer system resources

Thread Libraries

● Provide interface for thread manipulation:
● creating and destroying threads
● passing messages and data between threads
● scheduling thread execution
● saving and restoring thread contexts

● Are not a part of C standard
● Example libraries:

● POSIX threads
● SOLARIS threads

Thread Control

• Pthreads defines about 60 functions that
allow C programs to create, kill, and reap
threads, to share data safely with peer
threads, and to notify peers about changes
in the system state.

• However, most threaded programs use only
a small subset of the functions defined in the
interface.

Creating threads

#include <pthread.h>

typedef void *(func)(void *);

int pthread_create(pthread_t *tid,
pthread_attr_t *attr, func *f,
void *arg);

returns: 0 if OK, non-zero on error

pthread_t pthread_self(void);

Terminating Threads
A thread terminates in one of the following ways:

– The thread terminates implicitly when its top-level thread
routine returns.

– The thread terminates explicitly by calling the
pthread_exit() function, which returns a pointer to the return
value thread return. If the main thread calls pthread_exit, it
waits for all other peer threads to terminate, and then
terminates the main thread and the entire process with a
return value of thread return.

– Some peer thread calls the Unix exit() function, which
terminates the process and all threads associate with the
process.

– Another peer thread terminates the current thread by calling
the pthread_cancel() function with the ID of the current
thread.

int pthread_exit(void *thread_return);
– Returns 0 if OK, nonzero on error

int pthread_cancel(pthread_t tid);
– Returns 0 if OK, nonzero on error

Reaping terminated threads

● Threads wait for other threads to terminate by
calling the pthread_join function.

● int pthread_join(pthread_t tid, void
**thread_return);

● The pthread_join function blocks until thread tid
terminates,

● There is no way to instruct pthread_join to wait
for an arbitrary thread to terminate.

Detaching threads

• At any point in time, a thread is joinable or detached. A joinable thread can
be reaped and killed by other threads. Its memory resources (such as the
stack) are not freed until it is reaped by another thread.

• In contrast, a detached thread cannot be reaped or killed by other threads.
Its memory resources are freed automatically by the system when it
terminates.

• By default, threads are created joinable. In order to avoid memory leaks,
each joinable thread should either be explicitly reaped by another thread, or
detached by a call to the pthread_detach function.

• int pthread_detach(pthread t tid);
• Note:

pthread_detach(pthread_self()) // used to detach self
• Generally threads are detached

Shared variables

• Sharing variables is one of the most attractive features
of threads

• It is also most dangerous for creating bugs that are
difficult to detect

• Global variables are shared
• Local automatic variables (stack) are not shared but

are not protected either (share common virtual address
space)

• Local static variables are shared as globals
• Generally: a variable is shared if and only if one of its

instances is referenced by more than one thread.

Incorrect sharing
#include <pthread.h>
#define NITERS 10000000
void *count(void *arg);
/* shared variable */
unsigned int cnt = 0;
int main() {
 pthread_t tid1, tid2;
 pthread_create(&tid1, NULL, count, NULL);
 pthread_create(&tid2, NULL, count, NULL);
 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 if (cnt != (unsigned)NITERS*2)
 printf("BOOM! cnt=%d\n", cnt);
 else
 printf("OK cnt=%d\n", cnt);
 }
void *count(void *arg) { // thread routine
 int i;
 for (i=0; i<NITERS; i++)
 cnt++;
 return NULL; }

Sharing problem

Code for thread:

for (i=0; i<NITERS; i++)

 ctr++;
Is actually:

 LOAD ctr
 INCREMENT ctr
 STORE ctr

Mutexes
● A mutex is synchronization variable that is

used to protect the access to shared
variables. There are three basic operations
defined on a mutex.
● Init, Lock, Unlock

● int pthread_mutex_init(pthread_mutex_t
*mutex, pthread_mutexattr_t *attr);

● Compile time initialization
pthread_mutex_t mutex =

PTHREAD_MUTEX_INITIALIZER;

Mutex lock and unlock
• int pthread_mutex_lock(pthread_mutex_t *mutex);
• int pthread_mutex_unlock(pthread_mutex_t

*mutex);
● These are atomic operations
● Locking is also called aquiring the mutex,

unlocking is called releaseing
● At any moment only on thread can hold a

mutex

Using mutexes

// general code
pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);

// thread code

pthread_mutex_lock(&mutex);

// critical section

// access shared variables

pthread_mutex_unlock(&mutex);

Correct thread routine

 /* thread routine */
void *count(void *arg)
{
 int i;

 for (i=0; i<NITERS; i++) {
 pthread_mutex_lock(&mutex);
 cnt++;
 pthread_mutex_unlock(&mutex);
}
return NULL;

Deadlocks

● Locking order might cause issues when threads
hold mutexes mutually

Classical scheduling

● Two goals:
● Maximize processor usage
● Minimize response time of tasks

● Evaluation:
● Task waiting time
● Processor throughput
● Total execution time of tasks
● Average response time of tasks

Scheduling decisions

● Preemptive or non-preemptive
● Static or Dynamic
● Soft or Hard (Best effort vs Strict)

Scheduling strategies

● Round-robin
● First come first served (FIFO queue)
● Prioritized scheduling
● Deadline prioritization
● Shortest first

Implementation details

● Election table
● Priority queue list
● For complex scheduling, two level scheduling

can be implemented
● High level decisions on general policy that affect

longer periods
● Lower level scheduler decides reordering for

immediate future

Priority scheduling

● Red is of higher priority, but with longer
deadline

Rate monotonic scheduling

● Priority is inverse of the period
● Short periods are high priority and vice versa

Earliest deadline first

● Priorities are assigned according to deadlines

Cyclic Executive

Cyclic Executive

● Offers 3 priorities for tasks
● Interrupt if pre-emption is needed (high priority)
● HW Clock with cooperative scheduling (middle

priority)
● Base code with first come first served priority

(low priority)
● Inflexible, since does not offer task “aging” or

dynamic scheduling
● Simple to test

Tasks exeeding time-slot

● Might be possible to split larger tasks.
● Starts on even ticks, then yields time to others
● Finishes on odd ticks

Posix scheduling

● Phtread scheduling with function:
● sched_setscheduler()
● SCHED_FIFO – realtime
● SCHED_RR – realtime with timeslots
● SCHED_OTHER – normal scheduling
● SCHED_BATCH – less prioritized normal (Linux

2.6.16+)
● SCHED_IDLE – lowest possible priority (Linux

2.6.23+)

SCHED_FIFO

● FIFO processes pre-empt any OTHER and
BATCH processes.

● If FIFO process is pre-empted it wil resume as
soon as higher-priority processes are blocked

● If becomes runnable, inserted to queue
● sched_setscheduler() puts in front of queue if

runnable (ignoring POSIX)
● sched_yield() to send self to end of list

SCHED_RR

● Round Robin enchances FIFO
● Each process gets maximum time quantum
● If runs longer, put to end of queue
● sched_rr_get_interval() will return the quantum

SCHED_OTHER

● Normal way of things
● Processes run according to the nice value

● nice() or setpriority() used to set the value

● The priority increases each quantum processes
are ready, but denied time

● SCHED_BATCH assumes CPU-intensive
process which is not interactive and it gets a
penalty in priority

Permissions

● CAP_SYS_NICE permission needed
● Unprivileged processes can set

SCHED_OTHER for the same user
● Can be overriden
● Processes running under SCHED_IDLE cannot

change to something other without permissions

Miscellaneous

● Child processes inherit their parents'
scheduling policy

● Real-time processes need memory locking
(mlock() and munlock()) to avoid paging
delays

● A non-blocking loop in _FIFO or _RR priority
will lock the computer unless a shell is
scheduled on same level prior to running it for
killing it off. Remember when debugging.

Process creation and destruction

● Unix offers 4 system calls for process creation,
destruction and waiting for them to finish:
● exec() family
● fork()
● wait()
● exit()

Loading of a process

● Binary executable contains header, (program)
text, data, relocation information and symbol
table. Text and data will be loaded with program
Executable file Process memory

HEADER TEXT

TEXT (program) DATA

DATA (initialized) (BSS)

BSS (=uninitialized data) free mem

RELOCATION STACK

SYMBOL TABLE (can be stripped) USER BLOCK (in kernel adr space)

exec() family

● Exec loads a binary executable into memory
and starts a process.

- execl : full file path, arguments as chars
- execv : full file path, arguments as array
- execle : full file path, arguments as chars,
environment

extern char **environ;
int execl(const char *path, const char* arg, ...);
int execv (const char *path, char *const argv[]);
int execle(const char *path,

const char *arg, ..., char * const envp[]);

Environment

● getenv()
● see also putenv()

exec() family (2)

● The real function is execve()

fork()

wait()

waitpid()

system()

atexit()

Demon

Zombie

Process

Files in UNIX

● Everything is a file:
● File is a file
● Directory is a file
● FIFO special file (named pipe)
● Character special file (subtype of a device file)
● Block special file (subtype of a device file)
● Symbolic link file

Te olete C loengus
06:26:12 PM

File attributes

Attribute Value meaning
File type Type of file (regular, directory, fifo,
…)
Access permission File access permissions for different users
Hard link count Number of hard links of a file
UID User ID of file owner
GID Group ID of file
File size File size in bytes
Last access time Time the file was last accessed
Last modification time Time the file was last modified
Last change time Time the file attribute was last
changed
Inode number Inode number of the file
File system ID File system ID where the file is storedNB: File name is not an attribute!

Te olete C loengus
06:26:12 PM

Inode

 File data is held in a structure called
inode.

 File-system keeps them in a table called
inode table.

 Inode number uniquely defines a file

Te olete C loengus
06:26:12 PM

File status

 Returns information about the file node
 fstat() is analogous to stat(), but takes the

file descriptor as the first argument.
 lstat() is like stat(), but returns the data

about symbolic link in stead of linked file

int stat(const char *file_name, struct stat *buf);
int fstat(int fd, struct stat *buf);
int lstat(const char *file_name, struct stat *buf);

Te olete C loengus
06:26:12 PM

Stat structure
#include <sys/stat.h>, <sys/types.h>
struct stat
{
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last data modification */
 time_t st_ctime; /* time of last inode change */

};

There are macros to manipulate the data more easily!

Te olete C loengus
06:26:12 PM

Directory

 In UNIX a directory is a file which contains
pairs:

– inode: name

 It contains the files "." and "..", which
correspond to the same directory and to
the one above the current,
correspondingly. They contain their
inodes.

 Root directory / has .. file which points to
itself

 If inode is marked as 0, the entry is free
to write

Unix IO

● Why necessary to know
● Helps to understand other concepts such as

process creation anomalies
● Sometimes necessary to use: file metadata,

network programming risks

Te olete C loengus
06:26:12 PM

File Descriptor

 File for a process is a small positive
integer named "File Descriptor"

 Sometimes the word "channel" is used.
 Predefined descriptors:

– 0 standard input
– 1 standard output
– 2 standard error

 Descriptor is a file table index

File sharing

● Open files in kernel are in 3 structures:
● Descriptor Table: unique for a process points to:
● File Table: shared by processes, holds file position,

reference count, points to V-node table:
● V-node Table: shared by processes, basically holds

most of stat() information

● Fork() copies Descriptor Table

Unix IO

● File: sequence of bytes
● Open files: open()
● Change current file position: seek()
● Read and write: read(), write()
● Close: close()

Notes about read() and write()

● They return how many bytes were moved.
● Sometimes these calls return before you have

sent all of the data (network reading would be a
prime example)

● Buffering happens only on file system level

fopen(), fread(), fwrite() etc

● Wrap open(), read(), write() to create streams
● They are buffered and therefore preferred.
● Stream from fileno:

● File number from stream:

FILE *fdopen (int fd, const char *mode);

int fileno(FILE *stream);

dup(), dup2(), dup3

● Copy the open file descriptor
● dup() - new descriptor is the lowest one
● dup2(int oldfd, int newfd) – close new;

 copy old to new
● dup3(int oldfd, int newfd, int flags) –

close new; copy old to new
flags : O_CLOEXEC – prevents race conditions
on threaded programs

Example of output redirection

● Open file to get descriptor
● Use dup2() to replace descriptor of stdout (1)
● Printf sends data to a file now
● If you exec a program; output also sent to file

What to use

● Use Standard IO calls if you can
● Use Unix IO if you must

● Meaning: mostly for networking & control/speed

Te olete C loengus
06:26:12 PM

Hardlink

 link() hardlinks oldpath to newpath.
 When newpath exists, it is not overwritten
 The new file acts as a pointer to data. The

files are identical as they point to the
same inode.

 Returns 0 on success, -1 on error and sets
an errno

int link(const char *oldpath, const char *newpath);

Te olete C loengus
06:26:12 PM

Softlink

 Creates a softlink (or Symbolic link)
 Acts like a Windows shortcut and can be

either:
– Relative: ../text.txt
– Absolute: /home/irve/text.txt

int symlink(const char *oldpath, const char
*newpath);

Te olete C loengus
06:26:12 PM

unlink()

 Changes the inode of pointed file to 0,
then decreases the reference counter to
the file. If the counter reaches 0,
deallocates the data.

 PS! In reality the data gets replaced only
when the last process which uses the file
is stopped. You can open a temporary file,
unlink it and still access it!

int unlink(const char *pathname);

Te olete C loengus
06:26:12 PM

File permissions

 access() chechs if the processes have the
privilege to access the file for either
writing, reading or verifying its existence.

 mode is a bitmask of permissions R_OK,
W_OK, X_OK, ja F_OK (latter the existence
of the file)

 Returns 0, when the access is granted, -1
otherwise.

int access(const char *pathname, int mode);

Te olete C loengus
06:26:12 PM

Granting access to files

 Defines the file permissions to the file
 mode is the result of OR with the

following constants:

int chmod(const char *path, mode_t mode);
int fchmod(int fildes, mode_t mode);

#define S_IRWXU 0000700 /* RWX mask for owner */
#define S_IRUSR 0000400 /* R for owner */
#define S_IWUSR 0000200 /* W for owner */
#define S_IXUSR 0000100 /* X for owner */
#define S_IRWXG 0000070 /* RWX mask for group*/
#define S_IRGRP 0000040 /* R for group */
#define S_IWGRP 0000020 /* W for group */
/* jne... */

Te olete C loengus
06:26:12 PM

Setting the owner

 Change owner and/or group of the file
pointed by its path or file descriptor

 Owner can only be changed by the root
user.

 User can set the group of the file to the
groups to which it belongs.

 The root can set the group as needed

int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);

Te olete C loengus
06:26:12 PM

Permissions to new files

 Umask sets permissions to the new files
umask = mask & 0777

 The bits set in umask are removed.
 Permission bits = mode & ~(umask)
 Widely used umask is 022, which creates

files with permissions of 0666 & ~022 =
0644 = rw-r--r--

 The function always succeeds and it
returns the previous umask value.

mode_t umask(mode_t mask);

Te olete C loengus
06:26:12 PM

Directory management

 mkdir() creates a new directory

 rmdir() removes the directory
 The directory must be empty and can

only contain the files . and ..

int mkdir(const char *path, mode_t mode);

int rmdir(const char *path);

Te olete C loengus
06:26:12 PM

Working directory

 chdir() changes the working directory to
the pointed one.

 Returns a pointer to current working
directory

 buffer size must be at least 1 larger than
directory name.

 When buf is NULL, the function allocates
size bytes, otherwise stores it to pointer

int chdir(const char *path);
int fchdir(int fildes);

char *getcwd(char *buf, size_t size);

Te olete C loengus
06:26:12 PM

Directory Content Stream

 You can open directory streams

 Opens dirname as a stream. Positioned on
the first entry.

 Close the stream stream

#include <sys/types.h>
#include <dirent.h>
DIR *opendir(const char *dirname);

int closedir(DIR *dirp);

Te olete C loengus
06:26:12 PM

 Return the structure to dirent pointer,
which contains the current entry

 NULL is returned after the last entry
● <dirent.h> file describes the data structure
● readdir() overwrites the data after running
● POSIX standard states that dirent contains the

field char d_name[], which has no determined
length, to a maximum of NAME_MAX chars, null
terminated. Other fields are not portable, while
d_namelen field is often present

Listing stream entries

struct dirent *readdir(DIR *dirp);

Programming an Operating System

● Programming
● Tasks
● Scheduling
● Context Switches
● Mutexes

● Michael Barr, Programming Embedded
Systems in C and C++

Os under discussion ADEOS

ftp://ftp.oreilly.com/examples/nutshell/embedded_c/

● A Decent Embedded Operating System

Task States

● Ready <> Running > Waiting > Ready
● Running-Ready – task switching
● Waiting = Blocking
● Only one running at time

Task Creation

● ADEOS allows only task creation
● When (and if) a task function returns, task is

deleted
● Construction needs a function, priority and

stack size.

Scheduler

● Decides which task gets to run
● Example uses priority list for task scheduling
● FIFO behaviour in case of conflicts
● 255 priority levels

Scheduling Points

● Events during which scheduler is invoked
● (Task creation has one)
● os.schedule() runs

Clock Tick

● Runs on timer interrupts
● Waking the tasks which wait for timer to expire

Ready List

● Ordinary linked list
● Priority queue
● Next task always on top

Idle task

● Empty loop
● Hidden from application developer
● Has id and priority of 0
● Always ready

schedule()

● Looks for top task, if it is the running task, good
● Otherwise switches tasks
● Note that tasks start only after initialization of

scheduler (since scheduler is invoked on task
creation too)

Context Switch

● Architecture specific
● Must be written in assembler language
● restoreContext() and saveContext()
● Tasks wake in saveContext() and a clever jump

is done to distinguish between saving and
restoring.

Mutexes

● Multitasking aware binary flag
● Setting and clearing are atomic
● Interrupts are disabled
● Implementation: flag + waiting list
● Initialization simple

Mutex setting and clearing

● Setting
● If taken, process goes to waiting state until released
● Scheduling called

● Releasing
● Does not block
● On release a context switch might occur due to

scheduling

Optimizing compilers

● Same code has different representations
● Some are more efficient (yet less readable)
● Handrwitten assembler code is often optimal

How to optimize: use -O option for gcc

Why not the default option?

Limitations

● Never alter the correct program behaviour
● Their understanding of program behaviour is

limited
● Compilation must be fast

Optimization blockers

void foo1(int *xp, int *yp)
{

*xp += *yp;
*xp += *yp;

}

void foo2(int *xp, int *yp)
{

xp += 2 *yp;

}

● Similar code
● First uses 6 memory

references, second 3
● Would be possible to

optimize?
● What happens if

pointers are equal?

Optimization blockers

int f(int);
int func1(x) {

return f(x) + f(x) \
+ f(x)+ f(x);

}

int func2(x) {
return 4*f(x)

}

● func2() faster
● but only in case f() is

without side effects
● Usually not tested

Program performance assessment

● Speed of processors can vary
● Useful measure for examples: cycles per

element.
● What is the code overhead for any array

element

Base example

typedef struct {
int len;
data_t *data;

} vec_rec, *vec_ptr;

typedef int data_t; //or float for experiments

#define IDENT 0 // or 1
#define OPER + //or *

// actual implementation of vectors less interesting

Base implementation
void combine1(vec_ptr v, data_t *dest) {

int i;
*dest = IDENT;
for (i = 0; i < vec_length(v); i++) {

data_t val;
get_vec_element(v, i, &val);
*dest = *dest OPER val;

}
}

// int float
// unoptimized +42 *41 +41 *160
// optimized -O2 +31 *33 +31 *143

Moving calculations from loop
void combine2(vec_ptr v, data_t *dest) {

int i;
int length = vec_length(v)
*dest = IDENT;
for (i = 0; i < length; i++) {

data_t val;
get_vec_element(v, i, &val);
*dest = *dest OPER val;

}
}

// old optimized -O2 +31 *33 +31 *143
// move vec_len +22 *21 +21 *135

Reducing function calls
void combine3(vec_ptr v, data_t *dest) {

int i;
int length = vec_length(v)
data_t *data = get_vec_start(v);
*dest = IDENT;
for (i = 0; i < length; i++) {

*dest = *dest OPER data[i];
}

}

// move vec_len +22 *21 +21 *135
// direct data access +6 *9 +8 *117

// Note: we gained speed by losing in abstraction & modularity

Decompilation analysis

 Compare 3
 dest in edi, data in ecx, i in edx, length in esi
.L18 :loop
movl (%edi), %eax Read dest
imull (%ecx, %edx, 4), %eax Multiply data
movl %eax, (%edi) Write *dest
incl %edx i++
cmpl %esi, %edx Compare
i:length
jl .L18 if < goto loop

 Compare 4
 data in eax, x in ecx, i in edx, length in esi
.L24 :loop
imull (%eax, %edx, 4) %ecx Multiply by data[i]
incl %edx i++
cmpl %esi, %edx Compare i:length
jl .L24 If <, goto loop

Storage variable
void combine4(vec_ptr v, data_t *dest) {

int i;
int length = vec_length(v)
data_t *data = get_vec_start(v);
data_t x = IDENT;
*dest = IDENT;
for (i = 0; i < length; i++) {

x = x OPER data[i];
}
*dest = x;

}

// direct data access +6 *9 +8 *117
// temporary variable +2 *4 +3 *5

// Why not automatic?

Different functions

● combine3(v, get_vec_start(v) + 2);
● combine4(v, get_vec_start(v) + 2);
● Last element used for destination

c3 c4
2 3 5 2 3 5
2 3 1 2 3 5
2 3 2 2 3 5
2 3 6 2 3 5
2 3 36 2 3 5
2 3 36 2 3 30

Aside: further optimizations

● Modern processors use pipelining,
parallelization

● Can be used for advantage

Loop unrolling
void combine5(vec_ptr v, data_t *dest) {

int i;
int length = vec_length(v)
int limit = length - 2;
data_t *data = get_vec_start(v);
data_t x = IDENT;
*dest = IDENT;
for (i = 0; i < limit; i += 3) {

x = x OPER data[i] OPER data[i+1] OPER data[i+2];
}
for(; i < length; i++) {

x = x OPER data[i];
}
*dest = x;

}

// temporary variable +2 *4 +3 *5
// loop unroll x3 +1.3 *4+3 *5

// How many unrollings optimal?

Pointer code

● Use pointer code for speedups

void combine4p(vec_ptr v, data_t *dest) {
int length = vec_length(v)
data_t *data = get_vec_start(v);
data_t *dend = data +length;
data_t x = IDENT;
for (; data < dend; data++) {

x = x OPER *data;
}
*dest = x;

}

// temporary variable +2 *4 +3 *5
// pointer code +3 *4 +3 *5

// Mostly useless here, but really depends on compiler/platform
// Readability often priority

Parallelism

● It's often good to parallelize code
void combine6(vec_ptr v, data_t *dest) {

int length = vec_length(v);
int limit = length - 1;
data_t = *data = get_vec_start(v);
data_t x0 = IDENT; data_t x1 = IDENT;
int i;
for(i = 0; i < limit; i+=2) {

x0 = x0 OPER data[i];
x1 = x1 IOPER data[i+1];

}
for(;i < length; i++) {

x0 = x0 OPER data[i];
}
*dest = x0 OPER x1;

}
// loop unroll x3 +1.3 *4+3 *5
// parallelize by 2 +1.5 *2+2 *2.5

End results

● For most things unroll x8, parallel x4 is best
● For integer addition, best unroll x16
● on Pentium III

● Your results would be different

Less predictable features

● Cached data
● Load/store latency
● Branch prediction (predictive execution)

Cache

struct a {
int a;
int b;
int c;
int d;

};

struct a {
int a;
int b;

};
This is faster!

Row vs Column based access

● For two-dimensional arrays, visit by rows, not
by columns!

What to do in real-life?

● High level design: choose appropriate
algorithms and data structures.

● Basic coding principles
● Eliminate exessive function calls, move

computations out from loops, compromise on
modularity

● Eliminate unnecessary memory references. Use
temporary variables to hold intermediate results.
Store results only when final value calculated

Real-Life 2

● Low level optimizations
● Try different pointer-array code
● Reduce loop overhead by unrolling them
● Pipelined architecture: Find ways to split iterations

when needed

● Avoid introducing errors by unittesting.
Benchmark to find anomalies

Code Efficiency

● To avoid macro definitions, C99 has keyword:
inline

● When checking for alternatives, use switch
carefully:
● Put more popular cases first
● Use function pointer arrays

● Inline assembly
● Gloal variables (but maintenance nightmare)

Code Efficiency

● Fixed-vs-floating point: former is faster
● Small amount of decimal places: val << 2

● Use native word size (bus + registers are
faster)

Code Size

● Standard library routines refer to other
functions. Write your own printf()

● Goto is bad, yet good for jumping out of nested
loops.

Int fun(void) {
/* working */
goto CLEANING; /* in case of error */
/* more work */
return SUCCESS;

CLEANING:
/* cleanup here */
return FAILURE;

}

Memory Usage

● Reduce dependence on stack & heap by using
ROM for constant values (declare them as
const)

● Some constants change: use flash memory &
technicians

● Stack space estimation: fill memory with some
pattern; check changes after running

Power-saving

● Necessary for battery-powered devices
● Processor modes (PXA255 example)

● Turbo – minimize memory access due to waiting
● Run – default mode
● Idle – processor not clocked, peripherals operate
● Sleep – lowest power state

● Clock frequency – tricky, needs HW knowledge
● Reduce external memory access – cache,

processor memory

Optimization problems

● Dead code elimination
● Declare variables as volatile

● Debugging more difficult: breakpoints missing,
functions split and code different

Networking

● TCP/IP protocol
● On hardware level we have network adapter

which uses system bus to communicate with
memory (usually with DMA)

Getting and creating addresses

● Addresses have structure:

● Network byte order: big-endian

Hostname conversion

struct in_addr {
unsigned int s_addr; /* network byte order */

};

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int
hostshort);

unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned long int
netshort);

int inet_aton(const char *cp,
struct in_addr * inp);

char *inet_ntoa(struct in_addr in);

Domain names

● Domains are structured
● dijkstra.cs.ttu.ee -> ee > ttu > cs > dijkstra

● Host entry structures

● Retrieval and query

struct hostent {
char *h_name; /* official name */
char **h_aliases; /* null-terminated array of domains */
int h_addrtype; /* address type AF_INET */
int h_length; /* address length */
char **h_addr_list; /* null terminated array of in_addr

structs*/
};

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const char *addr, int
len, 0);

Domain name mappings

● One to one
● Host has only one name and address

● Multiple domains to one address
● dragon.ee www.dragon.ee

● Multiple addresses to multiple domains
● most of google

● Consider when working with host entries

Internet connection

● Communication done by sending streams of
bytes over the wire

● Full duplex: you can both read and write
● Point to point: connects a pair of processes
● Socket: endpoint for communication

● address:port

● Connection is a pair of sockets

Socket interface

● Berkeley sockets
● developed by their researchers, distributed with

Unix 4.2 BSD kernel and distributed to universities
and labs

● Socket from the view of kernel: communication
endpoint

● Socket from a programs view: an open file

Socket addresses

struct sockaddr {
unsigned short sa_family; /* protocol family */
char sa_data; /* address data */

}

struct sockaddr_in {
unsigned short sin_family; /* address family AF_INET */
unsigned short sin_port; /* port number in network byte order

*/
struct in_addr sin_addr; /* IP address in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

}

● Socket address; general and specific

Overview of interface

● Client
● socket()
● connect()
● read()/write()
● close()

● Server
● socket()
● bind()
● listen()
● accept()
● read()/write()
● close()

socket()

● Creates a socket descriptor

// int socket(int domain, int type, int protocol);

clientfd = socket(AF_INET, SOCK_STREAM, 0);

connect()

● Establish a connection with given socket
address

● Blocks until successful or error occurs
int connect(int sockfd, struct sockaddr *serv_addr, int
addrlen);

bind()

● Associate a socket with an address and port

● Convert active socket to listening socket

● Accept incoming connection
● note that a new file descriptor is returned; why?

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

int listen(int sockfd, int backlog);

int accept(int listenfd, struct sockaddr *addr, int
*addrlen);

Notes
● When a connection is terminated while it is

read, a signal is generated
● EPIPE: Broken pipe, program terminates unless

handled

● There are additional functions to replace read()
and write() with sockets
● send(), recv(): et specify additional flags for sending

and receiving data

● For UDP you can use recvfrom() sendto()
● connect() or bind()/listen() are not needed for them

Te olete C loengus
06:26:12 PM

Bit fields

 An alternative to flag variables. It is
possible to "pack" values into a structure
using : notation to signify the amount of
bits allocated. Assignment and use like a
regular structure.struct {

unsigned int is_keyword: 1;
unsigned int is_extern: 1;
unsigned int is_static: 1;

} flags;

flags.is_static = 1;
flags.is_keyword = 0;

Te olete C loengus
06:26:12 PM

Bit-fields (2)

 Bit-fields are declared as unsigned
integers to avoid sign problems.

 For use in expressions they are cast into
an integer automatically.

 Internal implementation depends on
architecture.

Te olete C loengus
06:26:12 PM

Variable arguments

 To declare functions with variable
arguments, just type ... like you would not
care about what goes there...

 How to get to them?

void foo(int arg1, int arg2, ...) {

Ellipsis here...

Te olete C loengus
06:26:12 PM

Getting the other arguments
using a macro (easier method)

 #include <stdarg.h>
 Macros:

 Possible implementation

More info: 'man stdarg' or 'man vararg'

typedef char *va_list;
#define va_start(ap, v) ((void) (ap = (va_list) &v + sizeof(v)))
#define va_arg(ap,type) (*((type *)(ap))++)
#define va_end(ap) ((void) (ap = 0))

void va_start(va_list ap, last);
type va_arg(va_list ap, type);
void *va_end(va_list ap);

Te olete C loengus
06:26:12 PM

Var args (example)
 #include <stdarg.h>
 #define MAXARGS 31
 void f1(int n_ptrs, ...) {
 va_list ap;
 char *array[MAXARGS];
 int ptr_no = 0;

 if (n_ptrs > MAXARGS)
 n_ptrs = MAXARGS;
 va_start(ap, n_ptrs);
 while (ptr_no < n_ptrs)
 array[ptr_no++] = va_arg(ap, char*);
 va_end(ap);
 f2(n_ptrs, array);
}

Te olete C loengus
06:26:12 PM

Posssible problems

 Disruption of work
 Data integrity
 Privilege escalation
 Data leakage

(CIA triad: confidentiality, integrity,
availability)

Te olete C loengus
06:26:12 PM

Guard your inputs

 Input is a lie!

Te olete C loengus
06:26:12 PM

Command line

 Execve() lets you add \0 chars where not
expected

 Setuid/setgid problems

Te olete C loengus
06:26:12 PM

Environment variables

 You have full control over environment
 IFS variable (telling what character

separates the commands in a shell)
 When you use system() function, causes

problems
 Solution: purify the environment; use only

what needed
 (setuid/setgid problems)
 User gets to include random .so files

using LD_PRELOAD (and change it in
~/.environment variable)

Te olete C loengus
06:26:12 PM

Filenames

 Sneaky . .. and / possibilities
 Buffer overrun with PATH_MAX problems
 ../*/../*/../*/../* denial of service when

using glob() function

Te olete C loengus
06:26:12 PM

Passwords

 Problem: how to ask password so that it
does not reach the screen of the user.

 "Solution":

 Connects to "real" terminal /dev/tty , if
cannot, tries stdin ja stderr . Blocks INTR,
QUIT and SUSP commands in terminal.

 Terminal is flushed before and after
password is typed

#include <unistd.h>
char * = getpasswd(char * prompt)

Te olete C loengus
06:26:12 PM

What does getpass() do?

 Prints the prompt
 Goes into noncanonical mode, turns off

echo, restores the terminal state after
function

 Due to lack of thread-safety, and
exclusion from POSIX standard, general
recommendation not to use it. Write
yourself (or find a working solution).

 For important applications the good
practice is to encrypt the password upon
recieval and overwrite the original buffer.

Te olete C loengus
06:26:12 PM

Encryption: crypt()

 Encrypts using DES (broken) or MD5
(broken soon); Blowfish or SHA-256 / SHA-
512:

 Belief that hash, once calculated cannot
be reversed in a reasonable time.

 salt: if two letters, chooses DES, if MD5,
start the string as 1 + 8 chars, which
end in $ or \0

 For Blowfish etc see manpage; you
change the id

char * crypt(constchar* key, const char* salt);

Te olete C loengus
06:26:12 PM

Salt

 Salting prevents dictionary attacks using
rainbow tables.

 Output being salt + $ (when missing) +
hash

 Salt should be a random string when the
password is stored

 For checking the password, provide the
previous output of crypt() as the salt, and
compare salt to crypt() result. (As $ ends
salt, you can provide the whole result for
salt argument)

Te olete C loengus
06:26:12 PM

Storage of passwords

 Hash is problematic; MD5 has over 9000
million tries per second

 You can calculate the hash repetitively on
existing hashes: try it 100 times to send
attacker away

 The attacker using a GPU will be thwarted
 Don't invent stuff, use the bcrypt library

Te olete C loengus
06:26:12 PM

Stack smashing

 Canary
– Ubuntus uses by default, others not

 Address space randomization (ASLR)

Te olete C loengus
06:26:12 PM

Standard library problems

 Mostly the lack of input length checks

Te olete C loengus
06:26:12 PM

Malloc

 Double free() really problematic
 You can control the behaviour by setting

MALLOC_CHECK 2 environment variable
 After the release, use a macro to set the

pointer to NULL

Te olete C loengus
06:26:12 PM

Non-negative values

 Use an unsigned type

Compilation steps

● Source code

● Preprocessing
● Compiler

● Assembly code

● Assembler
● Object code

● Linker

Makefiles

● Compilation must be an atomic process
– Otherwise the programmer debugs larger chunks

● Save time on compiling large projects
● Help with modularity
● Compile unfamiliar programs without thinking

Makefile layout

● File uses tabs instead of spaces
● Named either "makefile" or "Makefile"

target: prerequisite1 prerequisite2
commmand

myprog: myprog.c myprog.h
gcc myprog.c -o myprog

Laying out a program

● Modules:
– Spread the program over several .c files

– Use .h files for function prototypes and data

● For .h:
#define _header_h_
#ifndef _header_h_
...
#endif

.h files

● Describe the "interface"
● Function prototypes
● Data types and structures declared
● const and #define
● #includes for other headers

Makefile with separate linking

● Simple makefile which compiles in several
steps

● Note first and last directives
Makefile for the sample
sample: sample.o my_math.o

gcc –o sample sample.o my_math.o
sample.o: sample.c my_math.h

gcc –c sample.c
my_math.o: my_math.c my_math.h

gcc –c my_math.c
clean:

rm sample *.o core

Makefile (2)

● Make checks upon running the command
whether it needs to compile anything by looking
at file dates and their dependencies

● So it tries to only compile the minimal set

clean Convention

● Makefiles often specify (and programmers
expect) a way to clean out the temporary files

make clean
clears the files if specified

● If for some reason you need to recompile and
make does not want to:
 touch filename.h

Implicit rules

● Make can compile when some rules are omitted
● It "knows" how to compile from .c to .o, for

example, if the names match and only target
and prerequisites are present

Implicit Rule Example
objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

edit : $(objects)
 cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

Note special .PHONY keyword here!!!
.PHONY : clean
clean :
 rm edit $(objects)

.PHONY

● Make clean does not have prerequisites and
thus will always run

● If someone makes a file named "clean" into
directory, cleaning will fail

● .PHONY tells that we are dealing with a
command, not a target file

Macros

● You can define macros in a makefile to avoid
repeating yourself

● Macros are defined as:
name = value

● Used as:
$(name) or
${name}

Multiple directories

● Sometimes you need to split program modules
into directories

● Every module has its own makefile
● Program has a directory for every module and

one for all of the .h files
● Main Makefile creates the program
● Makefiles in modules make the corresponding

object files

Directory Example

● C program uses Stack module and Queue
module and has a main.

● Program has 7 files: StackTypes.h,
StackInterface.h, QueueTypes.h,
QueueInterface.h, StackImplementation.c,
QueueImplementation.c and Main.c

● The target is a program in a directory which
contains subdirectories Stack, Queue and
Include (containing every .h file)

Stack dir

● StackImplementation.c and the makefile:
export: StackImplementation.o

StackImplementation.o: StackImplementation.c \
 ../Include/StackTypes.h \
 ../Include/StackInterface.h
 gcc -I../Include -c StackImplementation.c
substitute a print command of your choice for lpr below
print:
 lpr StackImplementation.c
clean:
 rm -f *.o

Queue dir

● QueueImplementation.c and the makefile:
 export: QueueImplementation.o

QueueImplementation.o: QueueImplementation.c \
 ../Include/QueueTypes.h \
 ../Include/QueueInterface.h
 gcc -I../Include -c QueueImplementation.c
substitute a print command of your choice for lpr
below

print:
 lpr QueueImplementation.c
clean:
 rm -f *.o

Notes

● -I (capital i) tells where the library includes can
be found; use commas for multiple; don't use
spaces

● This enables us to gather .h files in one location
for ease of reference

● The \ symbol before line-end escapes it.

Main directory

● Main includes main.c and makefile:
export: Main
Main: Main.o StackDir QueueDir
 gcc -o Main Main.o ../Stack/StackImplementation.o \
 ../Queue/QueueImplementation.o
Main.o: Main.c ../Include/*.h
 gcc -I../Include -c Main.c
StackDir:
 (cd ../Stack; make export)
QueueDir:
 (cd ../Queue; make export)

#continues

Main directory (2)

print:
 lpr Main.c
printall:
 lpr Main.c
 (cd ../Stack; make print)
 (cd ../Queue; make print)

clean:
 rm -f *.o Main core
cleanall:
 rm -f *.o Main core
 (cd ../Stack; make clean)
 (cd ../Queue; make clean)

Notes

● Unix command sequence in brackets makes
them run as a subprocess

● So the directory changes apply, but only for the
subprocess itself

Let's Add Macros

CC = gcc
HDIR = ../Include
INCPATH = -I$(HDIR)
DEF = $(HDIR)/StackTypes.h $
(HDIR)/StackInterface.h

SOURCE = StackImplementation
export: $(SOURCE).o

$(SOURCE).o: $(SOURCE).c $(DEF)
 $(CC) $(INCPATH) -c $(SOURCE).c
print:
 lpr $(SOURCE).c
clean:

GNU Make

● GNU Make has a ton of features such as:
– Control structures and conditional clauses, cycles

– Simple text modifying features

– Automatic variables referring to target/source

● Gmake manual:
http://www.gnu.org/software/make/manual/make.html

http://www.gnu.org/software/make/manual/make.html

Valgrind

● Memory debugging and profiling tool
● Makes your program really slow, but documents

it while it runs
● Usage:

valgrind --tool=memcheck prog args
● Tools: memcheck, callgrind, cachegrind
● For callgrind run callgrind_annotate

Don't forget

● gdb
– and (somewhat) graphical ddd

● hexdump
● objdump

I18n ja L10n

● Internationalization – enabling translation
support for a program

● Localization – translation and modifying a
program to suit local idioms and customs

Te olete C loengus
06:26:12 PM

ASCII

 Time before ASCII luckily outside of our
scope

 ASCII standard: characters with value of
less than 32 are non-printable (bell sound
or feeding a new paper into the printer)

 Characters above 127 free for anyone to
use

Te olete C loengus
06:26:12 PM

IBM PC codepage (437)

 ASCII compatible
 For some European languages é and è

letters
 Horizontal and vertical table-drawing

characters
 Remember the older cashier screens

– (For those you can use the curses
library)

 What about Hebrew,
Asian languages,
Russian?

Illustration: https://en.wikipedia.org/wiki/File:Codepage-437.png

Te olete C loengus
06:26:12 PM

Unicode to the rescue

 Unicode is a collection of Code Points
 Every Code Point refers to a symbol which

sometimes is a character in some
language like A or Õ, or something else
like ffi (U+FB03)

 They exist in a rather plentiful manner
(cat faces etc)

 You can refer to the Code Points using
some specific encoding

Te olete C loengus
06:26:12 PM

Coding: UTF-8

 A specific coding
 Lower 127 characters are ASCII

compatible
 Further bytes represent multibyte

characters
 Linux has mostly completed

standardization to UTF-8; Use of anything
other than this should be considered
problematic

Te olete C loengus
06:26:12 PM

In practice

 GNU library: libiconv
 http://www.gnu.org/software/libiconv/

 fopen("file.txt", "r, ccs=UTF-8");
 wchar_t data-type
 fgetc() >> wint_t fgetwc(FILE * stream)
 EOF >> WEOF

Te olete C loengus
06:26:12 PM

Linux support

 The input from the keyboard (what you
get from terminal stdin) is converted to
UTF-8 stream (console driver does this
work)

 The output to console is decoded using a
UTF-8 decoder and is presented using a
16-bit font

 BOM does not exist (the FE FF)

Te olete C loengus
06:26:12 PM

Two approaches

 Keep internal data in UTF-8
 Keep data in its decoded form and

convert only upon outputting it
– A character would be an object in

memory in this case

Te olete C loengus
06:26:12 PM

Usage

 Define locale in environment:
LANG=et_EE (for output in ISO 8859-1)
LANG=et_EE.UTF-8 (for output in UTF-8)

 #include <locale.h>
 setlocale() - LC_CTYPE or LC_ALL

arguments
 command:

locale -a shows the locales installed into
system

Te olete C loengus
06:26:12 PM

Gettext

 Solutionf from Sun Microsystems
 Copied by GNU project
 Quite standard and widely used

Te olete C loengus
06:26:12 PM

Workflow

 Write your program using gettext() function and
locale registration

 Use xgettext program to gather your strings
into .pot file

 Create translation files for your target language
using msginit command

 Translate
 Cinvert translation into binary using msgfmt

program
 Put the result into

/usr/share/locale/XX/LC_MESSAGES (XX is
language; et or de, for example)

Te olete C loengus
06:26:12 PM

Hello.c
1 #include <libintl.h>
2 #include <locale.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 int main(void)
6 {
7 setlocale(LC_ALL, "");
8 bindtextdomain("hello", "/usr/share/locale");
9 textdomain("hello");
10 printf(gettext("Hello, world!\n"));
11 exit(0);
12 }

Source: http://oriya.sarovar.org/docs/gettext_single.html

Te olete C loengus
06:26:12 PM

Explanation

 setlocale() gathers the users preferences
for language and its customs (date
formats, week starting date, currency,
etc)

 bindtextdomain() tells that „hello“
program can find its translation under
/usr/share/locale (this is the default and
could be skipped)

 textdomain() tells that language set is
named "hello" in all of the languages

 gettext() should wrap all the strings;
alias _

Te olete C loengus
06:26:12 PM

Virtual memory

 Virtual memory gives you a large address
space (from 0 to "really large", latter
depending on system)

 It is not continous: every address is not
usable

 Divided into pages. (usually 4kB)
 Every page is located in the memory

(frame) or somewhere else (swap disk)
– Emptied memory marked as: "contains

zeroes"

 Virtual addresses are mapped to either
real frames or swap space

Te olete C loengus
06:26:12 PM

Page fault

 As there is more virtual memory than real
memory, we must swap pages between
"real" and "backup" memory

 It's called paging
 Page fault: an attempt to read memory

which is not in the RAM
 When page fault happens, the couple of

milliseconds needed for memory access
suddenly take a far greater amount of
time

 Hard disks become noisy

Te olete C loengus
06:26:12 PM

How to get memory

 There are two ways of getting memory
– upon starting your program (exec) when your

program gets its memory space and is
allocated space in there for its constants,
code text and stack space

– in your program:
● auto variables
● malloc
● mmap: map a file into virtual memory

– fork: copy on write trikk

 When program stops, its memory space
collapses

Te olete C loengus
06:26:12 PM

Tracing memory

 You can trace memory allocation using

 Use environment variable named
MALLOC_TRACE to specify the file which
will store the statistics about memory
allocation and release

 The first activates, the second
deactivates trace

 GNU specific: mcheck.h provides it
 Result is not human-readable – use a

command:

void mtrace(void);
void muntrace(void);

mtrace progamname mtrace-log

Te olete C loengus
06:26:12 PM

mmap()

 mmap() maps a file into virtual memory
(or creates an anonymous mapping)

 Sometimes usefil:
– We can read only parts of file which we use
– mmap() lets you write changes back to disk
– we can open files larger than mem+swap

– Parameters: desired start of mapping, length,
protection data, management data, file
descriptor and file offset

void * mmap (void *address, size_t length, int protect,
 int flags, int filedes, off_t offset)

Te olete C loengus
06:26:12 PM

mmap() parameters
 prot: PROT_READ, PROT_WRITE,

PROT_EXEC bits
– depending on system: write is usually read or

write protected files can not be written when
PROT_READ is missing

 flags: refine mapping:
– MAP_PRIVATE: don't write changes into file
– MAP_SHARED: changes visible in file and

other processes
– MAP_FIXED: get this address or fail
– MAP_ANONYMOUS: don't open a file (some

systems expand heap using this trick)

Te olete C loengus
06:26:12 PM

munmap() & msync() &
madvise()

 munmap(): removes mapped space
starting from an addressto given address
(may remove several); can handle
unmapped segments.

 msync(): write mapping to file from given
point

 madvise(): suggests how you want to use
an address region: for random access,
sequental access; will we need it all
eventually or is the contents becoming
irrelevant and when anything happens to
it, the client won't leave the room in
screaming agony.

Overview

● OSE
● OSEK/VDX
● Nucleus
● VRTX
● VxWorks
● QNX
● μC/OS

OSE by ENEA

● Operating System Embedded

● One of the most widely used RT operating systems

● 1.5 billion run-times deployed

● Swedish company

● Characterized by event messages for interprocess
communication

● Wide support for processors

● Over half of 3G base stations

OSEK/VDX

● Automotive standard with many
implementations (consider POSIX)

● Offene Systeme und deren Schnittstellen für
die Elektronik in Kraftfahrzeugen

● “Open Systems and their Interfaces for the
Electronics in Motor Vehicles”

● Runs without memory protection
● Open standard

OSEK/VDX Specifies

● Static tasks, stacks, mutexes
● Tasks

● Basic: never block
● Enhanced: can wait on objects

● Priorities, round robin for same level
● Deadlock prevention with Priority Ceiling

● Task which holds a priority object will prevent lower
priority tasks from running

Nucleus

● 2.1 billion run-times deployed (according to
developer)

● Closed source
● Windowing system
● Products

● Motorola, Samsung, LG cellular phones
● Creative Zen soundcards
● Many iPhone clones

VRTX

● Versatile Real-Time Executive
● Two kernels: microcontroller and scalable
● Runs Hubble Space Telescope
● Also used by Motorola

VxWorks

● Started as improvement on VTRX (1985)
● Kernel was replaced later
● Name is probably a pun on VTRX
● Development done on host such as Linux, Unix,

Windows with cross-compiling to ease testing
● Honda ASIMO; Boeing 787, 747-8; Linksys

WRT54G, Canon DIGIC-II & DIGIC-III; Apache
Longbow attack helicopter; Spirit&Opportunity
rovers

QNX

● Microkernel architecture
● cars, mobile phones
● Owned by BlackBerry
● Amount of (optional) "services"
● proc – system service for task management
● message passing passes CPU time

μC/OS-II & -III

● Started as a two part article in Embedded
Systems Programming magazine

● Free for noncommercial use
● $10000 per end product otherwise
● Also certified for use in safety critical contexts
● The Book!

How to Choose?

● Main characteristics:
● Worst case performance documented
● Interrupt latency known
● Context switch time

● Exclude from the list:
● Processor
● Real-time performance
● Price

Last optimization

● Compatibility of compiler
● Debugging issues
● Development tools
● Memory requirements
● Add-on software (network, usb, filesystems)
● Vendor experience

That's all, folks

● Insert copyrighted image here

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Definition of Thread
	Process vs Thread
	Benefits of using threads instead of processes
	Benefits of multi-threading
	Thread Libraries
	Thread Control
	Creating threads
	Terminating Threads
	Reaping terminated threads
	Detaching threads
	Shared variables
	Incorrect sharing
	Sharing problem
	Mutexes
	Mutex lock and unlock
	Using mutexes
	Correct thread routine
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288

