
Software Synthesis and Verification

Prof. Jüri Vain
Tallinn University of Technology

ITI8531

2

Why formal methods?
Auto-pilot example

Problem
Design a module for airplane auto-pilot that avoids collision with
other airplanes.
Possible design solution (conceptually):
When distance is 3km, give warning to approaching plane and
notify own pilot. When distance is 1km, and no course change
is taken, go up.

ITI8531

3

Problem with (bad) solutions
 Assume both planes have the same collision avoidance

software. Then both go up and ...

 Some famous bugs
 Several NASA space missions have been lost
 Intel floating point processor bug
 A military aircraft flipped when crossing

the equator.
 Bug in US F-16 software: aircraft
control lost when flying low over Dead Sea
(altitude < normal sea level)

4

This happens in real software!

ITI8531

What makes CPS design so hard?

5
ITI8531

Common characteristic of CPS:
Complexity & Heterogeneity
 Multi-scale technology integration and mapping that:

 data gathering from simple sensors … data warehouses;
 data, computing, and services are distributed in the cloud;
 access to data and services via various end-user utilities.

 The architecture is open and dynamic with
 heterogeneous networking and
 heterogeneous components.

 High level of concurrency with
complex interactions where

 the location of data&computation
 and timing is critical

6
ITI8531

7

Moore’s Law :
The performance of microprocessors doubles every 18 months

Proebsting’s law : Compiler technology doubles the performance of
programs every 18 years

Increasing performance of core technologies

ITI8531

Increasing performance of core technologies

 Gilder’s Telecom Law :
3x bandwidth/year for 25 more years

 in 1996: whole US WAN bisection bandwidth was 1 Tbps
 in 2014:

 TUE and U. of Central Florida have ashieved 255 terabits
per second per optical fiber, i.e. 5.1 terabits per carrier

8

1 fiber = 255 Tbps

ITI8531

9

Increasing dependability requirements

 Dependability is systems’ and services’ integral measure that
captures

 availability
 reliability
 maintainability
 durability
 safety
 security
 … Ariane 5 accident

The launch failure brought the risks of complex systems to the attention of general public. The
subsequent automated analysis of the Ariane code was the first example of large-scale static code
analysis by abstract interpretation. This led to the discipline of dependability for * - critical systems.

ITI8531

http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Abstract_interpretation
http://en.wikipedia.org/wiki/Safety-critical_system

Cyber-Physical Systems

10

*
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*
*

*
*
*

*
*

ITI8531

Cyber-Physical Systems

11

*
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*
*

*
*
*

*
*

ITI8531

Implications of complexity & dependability
for CPS development process

Design task
Tasks delayed (%) Tasks causing delay (%)

Auto-
motive

Auto-
mation Medical Auto-

motive
Auto-
mation Medical

System integration
T & V 63 56,5 66,7 42,3 19 37,5
System Archi-tecture
D&S 29,6 26,1 33,3 38,5 42,9 31,3

SW application and/or
middleware D & T 44,4 30,4 75 26,9 31 25

Project management &
planning 37 28,3 16,7 53,8 38,1 37,5

ITI8531 12

Source: Inria research report n° 8147 november 2012

 Quality dilemma: drop the quality for more features
 Test and verification are the bottlenecks in design processes
 Error detection/diagnosis/repairment constitute 50-70% of costs

CPS design challenges (I):
heterogeneity of requirements

 Technology integration and mapping,
 Reliability and resilience,
 Power and energy consumption,
 Security,
 Diagnostics,
 Run-time management,
 Real-time feedback,
 ….

13ITI8531

CPS design challenges (II):
Complexity

 Strong dependency between design aspects (functionality,
safety, security, …)

 how to assure the coherence of aspects?
 Variety of control/communication/coordination scales from

minuscule pace makers to national power-grids
 how the time scales match?

 High level of concurrency with complex interactions
 how to explore the full state space?

 Wide spectrum of timing requirements of interacting
components.

 is design feasible regarding timing constrstraints
14

ITI8531

How can formal methods/tools address
CPS design challenges?

FM must support
 Model-based development with rigorous formal semantic basis.
 Scalability and extendability of methods and tools.
 Complience with state-of-the-art programming technologies and

standards.
 Simplicity of use in industrial engineering.

15
ITI8531

17

Formal methods in a nutshell
 FMs deal with formal notation – state, data type, refinement,...

 Formal notation has rigorous semantics

 FMs emphasize
 symbolic reasoning
 transformations
 analysis
of abstract formal notations.

 FMs is not esoteric science,
e.g. compilation in a broad sense is a FM: high-level notation is
transformed to low-level executable notation.

ITI8531

18

Taxonomy of formal methods

VDM
ASM

Profiles of
SysML

Formal
Specification

SDL

Synchronous
Languages

Compiler tech.

Model checking,
Theorem Proving,
Static analysis

Equivalence
Checking,

SAT Formal
Verification

Formal
Synthesis

ITI8531

Formal Specification (1)
 Given:

 possibly unstructured, fragmented, incomplete, …
descriptions of the system or its requirements expressed in
different informal forms of representation.

 Goal:
 express this knowledge about the structure, behavior,

properties in some formal language.

ITI8531 19

20

Formal Specification (2)
 abstracts from unnecessary implementation details
 provides rigorous mathematical semantics
 abstraction allows high-level reasoning while implementation details

are not clear yet
 allows to avoid ambiguous or inconsistent specifications.

Challenges:
 Specification refinement/ consistency checks/ aspect extraction are

difficult to comprehend by engineers without theoretical training.
 Elaboration of domain oriented languages and their mapping to

standard formalisms is required

ITI8531

Formal Synthesis (I)
 Given:

 Reguirements to the artefact to be synthesised
 (Possibly) design templates, patterns…, components
 Design constraints (structure, behavior, properties,…)
 Other constraints (cost, ethical, aesthetic, …)

 Goal:
 Construct architecture, control structure, data, code

ITI8531 21

22

Refinement based Synthesis (I)
Requirements Specification

1st Refinement

3rd Refinement

2nd Refinement

4th Refinement
(last refinement)

Compiler

Compiler

C Program

ITI8531

23

Refinement based synthesis (II)
 Integrates the refinement steps with verification.
 Incremental refinement steps are guided by domain heuristics.
 Refinement correctness verification is based on components’.

specifications and their composition rules i.e. compositionality.
 Proofs can be automatized but are computationally expensive.
 Refinement steps may be eiher

 correct by construction or
 ‘invent-and-verify ‘.

 Example: B-Method and Rodin tool (Event-B.org)

ITI8531

25

Formal Verification
Given: system requirements specification and implementation
Prove: that implementation satisfies the requirements specification

 Full blown “post mortem verification” is too complex
 Simplifications applied are:

 partial specifications (slicing, aspect orientation, contracts):
 type safety,
 functional equivalence of systems,…

 compositionality (deduce the correctness of whole from the
correctness of components);

 property preserving abstractions, and reduction techniques.

ITI8531

26

Classes of verification methods
 Boolean methods:

SAT, BDDs, ATPG, combinational equivalence check
 Finite state methods:

bisimulation and equivalence checking of automata, model
checking (MC)

 Term based methods:
term rewriting, resolution, tableaux, theorem proving

 Abstraction based methods
BDDs, symbolic MC, theorem proving, SMT constraint
solving

ITI8531

27

Software Oriented Formal Methods

 Model-based testing (MBT)
 Deductive verification
 Model checking (automatic verification)
 Static analysis
 SMT- constraint solving
 Combinations of the above

ITI8531

28

Test & Verification
 Testing

 dynamic execution / simulation of system runs
 Present view: tests have to be integrated in the

development process
 Extreme view: testing should “drive” the development

process
 Verification

 Means: static checking, symbolic execution.
 In HW design community: verification means also testing

 In FM community Testing ≠ Verification
 Testing is partial exploration method (not all executions are

covered)
 Verification is complete method but more costly than testing

ITI8531

29

Verification: process and parties

$$$
SPEC

Verifier/ testing person

Informal
requirements

Code

User

Does the pgm.
what’s expected?

Ideas & wishes

Customer Analyst

Developer

Is spec/design/
program correct

How to formalize?

Bug
report

Different feedback flows are possible!

Steps covered with FMs

Design

ITI8531

30

(Traditional) testing
 Executing the software in order to exercise and discover

errors
 Still most handy and common method in sw industry +
 Partially manual, some automation tools exist (for running

tests, organizing test data and reporting) -
 Applicable directly on executable software +
 Not exchaustive, errors often survive -
 Depends on tester’s intuition and experience +/-
 Formal spec is not needed +/-

Testing

ITI8531

Model-Based Testing (MBT)

 Goal: Check if real system conforms
with requirements specification.

 Advantages/disadvantages
+ model hides irrelevant details of

implementation;
+ automatic generation and execution of

tests;
+ systematic coverage of requirements
+ relevant for regression testing

- modeling overhead!

31
ITI8531

32

Testing

Model
CheckingDeductive

Verification

ITI8531

33

Model Checking
Given a model M and a property P, check if M satisfies P

 Exhaustive state space exploration method.
 Uses graph theory and automata theory to decide on properties

of programs algorithmically
 State space explosion: complexity of the problem or bad

modeling causes exponential memory and time growth
 Due to algorithmic state space exploration the method is

limited, suites for finite state systems
 But there are many heuristics and techniques to reduce time

and memory space

Model
checking

ITI8531

34

Deductive Verification
Aplies theories and logic inference to prove properties
of system specification formally

 Is based on proof theory and techniques +
 When doable provides full certainty of correctness +

 Requires expertise in logic, math and tools usage -
 Highly time consuming (inereactive) -
 Susceptible to discrepancies between sw and model -
 Practical only with tool support -
 Applicable on small and medium size examples -
 Requires accurate specification -

Deductive
Verification

ITI8531

35

Comparing verification methods
Method

Criterion
Testing Deductive

Verification
Model

Checking
Size of system Small-Very large Limited examples 100s-1000s lines
Time Minutes-Hours Days-Weeks Minutes-Hours

Expertise needed Test engineers/
programmers

Mathematicians,
Comp-Sci., Logic.

Comp.-Scientists/
sw engineers

Popularity SW/HW industry Mostly research Reserch/industry

Specification Informal
requirement docs

Logic or
automata based

Logic or
automata based

Modelling /
corrections

Not needed /
code correction

Must /via formal
representation

Must/via formal
representation

ITI8531

36

Model
Checking

Deductive
Verification

Integrated FM (I): Symbolic model
checking

 General startegy
 Find symbolic states and

transitions by proving
equivalences of explicit
states.

 Then apply model checking
on this finite abstractions.

IEEE CSS Winter School on Cyber-Physical Systems 2016, Srivilliputtur
ITI8531

37

Testing

Model
Checking

Deductive
Verification

Integrating formal methods (II):
Symbolic Verification / Testing

 Apply abstraction techniques to
generate symbolic states and
transitions of the system model.

 Apply symbolic model checking
to generate abstract witness
traces for temporal formulas
that describe the test goals.

 Apply these witness traces as
test sequences instantiated with
concrete test data.

ITI8531

Instead of summary:
Current trends of FM
 Trying to solve special cases of generally

undecidable or highly complex problems.
 Improving usability
 Integrating mutually complementing FMs
 Building industry strength aka scalable tools
 Applying parallelization, distributed and high-

performance computing
 Combing FM with AI and soft computing

techniques.

ITI8531 38

ITI8531 39

Questions?

	Software Synthesis and Verification
	Why formal methods?
	Problem with (bad) solutions
	This happens in real software!
	What makes CPS design so hard?
	Common characteristic of CPS: Complexity & Heterogeneity
	Increasing performance of core technologies
	Increasing performance of core technologies
	Increasing dependability requirements
	Cyber-Physical Systems
	Cyber-Physical Systems
	Implications of complexity & dependability for CPS development process
	CPS design challenges (I): heterogeneity of requirements
	CPS design challenges (II): Complexity
	How can formal methods/tools address CPS design challenges?
	Formal methods in a nutshell
	Taxonomy of formal methods
	Formal Specification (1)
	Formal Specification (2)
	Formal Synthesis (I)
	Refinement based Synthesis (I)
	Refinement based synthesis (II)
	Formal Verification
	Classes of verification methods
	 Software Oriented Formal Methods
	Test & Verification
	Verification: process and parties
	(Traditional) testing
	Model-Based Testing (MBT)
	Slide Number 32
	Model Checking
	Deductive Verification
	Comparing verification methods
	Integrated FM (I): Symbolic model checking
	Integrating formal methods (II):�Symbolic Verification / Testing
	Instead of summary:�Current trends of FM
	Slide Number 39

