

Real-time Operating Systems and
Systems Programming

File IO, file and directory management

Topics

● Files
● Unix IO (system calls)
● Standard IO
● File commands

Files in UNIX

● Everything is a file:
● File is a file
● Directory is a file
● FIFO special file (named pipe)
● Character special file (subtype of a device file)
● Block special file (subtype of a device file)
● Symbolic link file

Te olete C loengus
11:39:00 AM

File attributes

Attribute Value meaning
File type Type of file (regular, directory, fifo, …)
Access permission File access permissions for different users
Hard link count Number of hard links of a file
UID User ID of file owner
GID Group ID of file
File size File size in bytes
Last access time Time the file was last accessed
Last modification time Time the file was last modified
Last change time Time the file attribute was last changed
Inode number Inode number of the file
File system ID File system ID where the file is stored

NB: File name is not an attribute!

Te olete C loengus
11:39:00 AM

Inode

 File data is held in a structure called
inode.

 File-system keeps them in a table called
inode table.

 Inode number uniquely defines a file

Te olete C loengus
11:39:00 AM

File status

 Returns information about the file node
 fstat() is analogous to stat(), but takes the

file descriptor as the first argument.
 lstat() is like stat(), but returns the data

about symbolic link in stead of linked file

int stat(const char *file_name, struct stat *buf);
int fstat(int fd, struct stat *buf);
int lstat(const char *file_name, struct stat *buf);

Te olete C loengus
11:39:00 AM

Stat structure
#include <sys/stat.h>, <sys/types.h>
struct stat
{
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last data modification */
 time_t st_ctime; /* time of last inode change */

};

There are macros to manipulate the data more easily!

Te olete C loengus
11:39:00 AM

Directory

 In UNIX a directory is a file which contains pairs:
– inode: name

 It contains the files "." and "..", which
correspond to the same directory and to the
one above the current, correspondingly. They
contain their inodes.

 Root directory / has .. file which points to itself
 If inode is marked as 0, the entry is free to write

Unix IO

● Why necessary to know
● Helps to understand other concepts such as

process creation anomalies
● Sometimes necessary to use: file metadata,

network programming risks

Te olete C loengus
11:39:00 AM

File Descriptor

 File for a process is a small positive
integer named "File Descriptor"

 Sometimes the word "channel" is used.
 Predefined descriptors:

– 0 standard input
– 1 standard output
– 2 standard error

 Descriptor is a file table index

File sharing

● Open files in kernel are in 3 structures:
● Descriptor Table: unique for a process points to:
● File Table: shared by processes, holds file position,

reference count, points to V-node table:
● V-node Table: shared by processes, basically holds

most of stat() information

● Fork() copies Descriptor Table

Unix IO

● File: sequence of bytes
● Open files: open()
● Change current file position: seek()
● Read and write: read(), write()
● Close: close()

Notes about read() and write()

● They return how many bytes were moved.
● Sometimes these calls return before you have

sent all of the data (network reading would be a
prime example)

● Buffering happens only on file system level

fopen(), fread(), fwrite() etc

● Wrap open(), read(), write() to create streams
● They are buffered and therefore preferred.
● Stream from fileno:

● File number from stream:

FILE *fdopen (int fd, const char *mode);

int fileno(FILE *stream);

dup(), dup2(), dup3

● Copy the open file descriptor
● dup() - new descriptor is the lowest one
● dup2(int oldfd, int newfd) – close new;

 copy old to new
● dup3(int oldfd, int newfd, int flags) –

close new; copy old to new
flags : O_CLOEXEC – prevents race conditions
on threaded programs

Example of output redirection

● Open file to get descriptor
● Use dup2() to replace descriptor of stdout (1)
● Printf sends data to a file now
● If you exec a program; output also sent to file

What to use

● Use Standard IO calls if you can
● Use Unix IO if you must

● Meaning: mostly for networking & control/speed

Te olete C loengus
11:39:00 AM

Hardlink

 link() hardlinks oldpath to newpath.
 When newpath exists, it is not overwritten
 The new file acts as a pointer to data. The

files are identical as they point to the
same inode.

 Returns 0 on success, -1 on error and sets
an errno

int link(const char *oldpath, const char *newpath);

Te olete C loengus
11:39:00 AM

Softlink

 Creates a softlink (or Symbolic link)
 Acts like a Windows shortcut and can be

either:
– Relative: ../text.txt
– Absolute: /home/irve/text.txt

int symlink(const char *oldpath, const char
*newpath);

Te olete C loengus
11:39:00 AM

unlink()

 Changes the inode of pointed file to 0,
then decreases the reference counter to
the file. If the counter reaches 0,
deallocates the data.

 PS! In reality the data gets replaced only
when the last process which uses the file
is stopped. You can open a temporary file,
unlink it and still access it!

int unlink(const char *pathname);

Te olete C loengus
11:39:00 AM

File permissions

 access() checks if the processes have the
privilege to access the file for either
writing, reading or verifying its existence.

 mode is a bitmask of permissions R_OK,
W_OK, X_OK, ja F_OK (latter the existence
of the file)

 Returns 0, when the access is granted, -1
otherwise.

int access(const char *pathname, int mode);

Te olete C loengus
11:39:00 AM

Granting access to files

 Defines the file permissions to the file
 mode is the result of OR with the

following constants:

int chmod(const char *path, mode_t mode);
int fchmod(int fildes, mode_t mode);

#define S_IRWXU 0000700 /* RWX mask for owner */
#define S_IRUSR 0000400 /* R for owner */
#define S_IWUSR 0000200 /* W for owner */
#define S_IXUSR 0000100 /* X for owner */
#define S_IRWXG 0000070 /* RWX mask for group*/
#define S_IRGRP 0000040 /* R for group */
#define S_IWGRP 0000020 /* W for group */
/* jne... */

Te olete C loengus
11:39:00 AM

Setting the owner

 Change owner and/or group of the file
pointed by its path or file descriptor

 Owner can only be changed by the root
user.

 User can set the group of the file to the
groups to which it belongs.

 The root can set the group as needed

int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);

Te olete C loengus
11:39:00 AM

Permissions to new files

 Umask sets permissions to the new files
umask = mask & 0777

 The bits set in umask are removed.
 Permission bits = mode & ~(umask)
 Widely used umask is 022, which creates

files with permissions of 0666 & ~022 =
0644 = rw-r--r--

 The function always succeeds and it
returns the previous umask value.

mode_t umask(mode_t mask);

Te olete C loengus
11:39:00 AM

Directory management

 mkdir() creates a new directory

 rmdir() removes the directory
 The directory must be empty and can

only contain the files . and ..

int mkdir(const char *path, mode_t mode);

int rmdir(const char *path);

Te olete C loengus
11:39:00 AM

Working directory

 chdir() changes the working directory to
the pointed one.

 Returns a pointer to current working
directory

 buffer size must be at least 1 larger than
directory name.

 When buf is NULL, the function allocates
size bytes, otherwise stores it to pointer

int chdir(const char *path);
int fchdir(int fildes);

char *getcwd(char *buf, size_t size);

Te olete C loengus
11:39:00 AM

Directory Content Stream

 You can open directory streams

 Opens dirname as a stream. Positioned on
the first entry.

 Close the stream stream

#include <sys/types.h>
#include <dirent.h>
DIR *opendir(const char *dirname);

int closedir(DIR *dirp);

Te olete C loengus
11:39:00 AM

 Return the structure to dirent pointer,
which contains the current entry

 NULL is returned after the last entry
● <dirent.h> file describes the data structure
● readdir() overwrites the data after running
● POSIX standard states that dirent contains the

field char d_name[], which has no determined
length, to a maximum of NAME_MAX chars, null
terminated. Other fields are not portable, while
d_namelen field is often present

Listing stream entries

struct dirent *readdir(DIR *dirp);

Te olete C loengus
11:39:00 AM

If you can read this the lecture
is over

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

