Machine Learning - Ill
Methods of Knowledge Based Software Development

S. Némm

IDepartment of Software Science, Tallinn University of Technology

15.12.2017

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017

@ Part | Neural Networks training

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017 2/25

Training

@ Training is iterative process which starts with initialization, when
initial weights are generated randomly or defined using some other
technique.

e During each iteration (epoch) measure of imprecision (loss function
(usually nonlinear)) is calculated then values of the weights are
updated. The idea is to solve optimization problem with respect to
loss function.

@ lterations are repeated until stopping criteria is met.

@ The choice of loss function, number of weights to identify and
computational restrictions define the choice of the training algorithm.

o Gradient descent, Newton's method, Conjugate gradient, Quasi
Newton method, Levenberg - Marquardt algorithm,

S. Némm (CS TUT) Machine Learning - Ill 15.12.2017 3/25

Training Algorithms
o Gradient descent (steepest descent). Slow but does not require a lot
of memory. Denote V f(w;) = g; then weights update rule is
Wit1 =w; —gi -, 1=0,1,...

where 7); is the learning rate.
@ Levenberg - Marquardt algorithm. Fast but requires a lot of memory.

Loss function:
2
f=>_¢

where e; are the residuals for each point of the data set. Jacobian
matrix of the loss function:
8€i

Jij =

where 7 indexes data points and j - weights of the network. Weights
update rule (here i is the epoch identifier):

Wil = W; — (JlTJZ + /\iI)il(QJiei), 1=0,1,...

where X plays the role of a learning rate.

S. Némm (CS TUT) Machine Learning - Ill 15.12.2017 4 /25

Example

Data set is represented by the surface in 3D set.

Let us adopt LM algorithm to just single neuron and observe
convergence process step by step.

Initialize the process by randomly generating the weights.

Denote the sum of squared residuals as SSR

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017

Neuron
Consider one neuron with two inputs and logsig activation function

e Consider one neuron with two inputs (denoted x and y) and logsig
activation function. (Notation is chosen to simplify geometric
interpretation).

@ Mathematical model of such neuron is given by

1
=
1 + ew1z+w2y

@ For the values w1 = 0.5 and wy = 2 this function graph in 3D space is

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017 6 /25

Implementation

@ Loss function:

w1Ii+w2yi))2

f Z((wlxz—i-wzyl) +1

@ Jacobian matrix of the loss function:
Elements of the first column:

Jil =

de; _Zixie(wmi—l-wzyi) xieZ(wll‘i"Fwai)
8w1 - ((e(w1$i+w2yi) + 1)2 + (e(w1zi+’w2yi) + 1)3)

Elements of the second column:

de; (_ziyie(wlxi+w2yi) yieZ(w1$¢+w2y¢))

Ji2 = 811)2 = (e(wlzi"‘w?yi) 4 1)2 + (e(wlzi—&-wgyi) + 1)3

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017

ES

Neuron

Generate the surface to approximate adding some noise.

Levenberg - Marquardt algorithm uses sum of squared errors as the
loss function.

Initialize the process by randomly generating the weights.

Denote sum of squared residuals as SSR

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017 8/25

Initial guess, SSR = 18.94

Epoch: 1

08

0.6
0.4
0.2

29
igff‘a 05 10
iq L15-1070% Of
Surface to approximate Initial approximation
Epoch: 1 Epoch: 1

06
0.4
02 ¢
00
-0.2
-04

Error representatlon Squared errof representatlon

S. Nédmm (CS TUT) Machine Learning - 11l 15.12.2017

Epoch 2 & 4, SSR = 12.3/7.8

Epoch: 2 Epoch: 2

Surface to approximate Initial approximation

Epoch: 4 Epoch: 4

1.0 06
08 04 ¢
02 ¢
06 H
00 &
0.4 H
-02 ¥
02
-0.4

RN) N

-05 00

% 0.
Error representation

-1.0

2 15710 Y -
Squared error representation

S. Némm (CS TUT) Machine Learning - 11l

Epoch 6 & 8, SSR =

Epoch: 6

Surface to approximate

Epoch: 8

s e -0 %
Error representation

S. Nédmm (CS TUT)

7.12/6.7

Epoch: 6

Initial approximation

Epoch: 8

_o5 00

S 510 Y -
Squared error representation

Machine Learning - |11 15.12.2017

11/ 25

Epoch 10 & 12, SSR = 6.08/5.39

Epoch: 10 Epoch: 10

Surface to approximate Initial approximation

Epoch: 12 Epoch: 12

10 06

038 04 ¢

06 02 :

Z 0.4 0.0 é

:’::,”////// 0.2 027

q T X %i_ N 05 00 05
157" . Y -15 " Y -
Error representatio Squared error representation

S. Nédmm (CS TUT) Machine Learning - 11l 15.12.2017 12 /25

Epoch 14 & 16, SSR =

Epoch: 14

i\
W\

AN
AN
A

i
i
\

\

Surface to approximate

Epoch: 16

’//

R
SN
AN
N

=
(X
A
i
\‘\\\\
\

ig

n

10792 7y

Error representatio

S. Nédmm (CS TUT)

4.59/3.71

Epoch: 14

Initial approximation

Epoch: 16

_o5 00

04 ¢
i
02 ¢

auare

-02 ¥

06
04 3
0.2

rad

0.0

aua

-02 ¥
-0.4

S 510 Y -
Squared error representation

Machine Learning - |11

15.12.2017

Epoch 18 & 20, SSR = 2.83/2.08

Epoch: 18 Epoch: 18

Surface to approximate Initial approximation

Epoch: 20 Epoch: 20

Error representatlon Squared errof representatlon

S. Nédmm (CS TUT) Machine Learning - 11l 15.12.2017 14 / 25

Epoch 22 & 24, SSR = 1.61/1.45

Epoch: 22 Epoch: 22

04 ¢
@
02 ¢

auare

-02 ¥

Surface to approximate Initial approximation

Epoch: 24 Epoch: 24

i
02 ¢

=4
o
auare

-0.4

Error representatlon Squared errof representatlon

S. Nédmm (CS TUT) Machine Learning - 11l 15.12.2017

Epoch 35 & 36, SSR = 1.41592182/1.41592116

Epoch: 35 Epoch: 35

0.6
0.4 §
02 ?,
0.0 g
-0.2 @
0.4
—2.61.51.0 0.51.0
100500051015 7151,50»5"'%
Surface to approximate Initial approximation
Epoch: 36 Epoch: 36
1.0 06
0.8 0.4 E
0.6 , 0.2 ,;
0.4 0o g
02 -02 ¥
=2 -0.4
T;BUS
. 1o -05 oo os %i
Error representatlon Sq UarEd error representatlon

S. Nédmm (CS TUT) Machine Learning - 11l 15.12.2017 16 / 25

Final result

@ Sum of squares of the residuals 1.41592116 at last iteration.
o Weights at last iteration wy; = 0.4787443 and wo = 1.99086222.

@ Could we build a better approximation?

S. Némm (CS TUT)

of the weights

Values

— Weight of x
Weight of y

5 10 15 20
Time in epoch

Machine Learning - |11

15.12.2017

Part Il

o Committee learning.

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017 18 / 25

Committee learning

@ Some times referred as ensemble learning.

@ The idea is to combine a number of weak (accuracy is slightly larger
than of random guessing) classifiers into a powerful committee.

@ Motivation is to improve estimate by reducing variance and
sometimes bias.

@ Bootstrap is the technique used to assess the model quality. It
requires one to draw data sets with replacement from the training
data. The samples are independent.

S. Némm (CS TUT) Machine Learning - Ill 15.12.2017 19 / 25

Bagging

@ Induced from the bootstrap technique (which is used to assess
accuracy of estimate).

@ Draw B samples with replacements and train the model on each
sample.

@ The bagging estimate then is defined by:

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017

Boosting

@ The final prediction is given by:

M
G(z) = sign(Z ame(x)).
m=1

which is weighted majority vote of classifiers G, (x). Here oy, are
weights describing contribution of each classifier.

@ While on the first view result is very similar to the bagging, there are
some major differences.

@ Two class problem where output variable coded as Y € {—1, 1}.

o For the classifier G(X) error rate is given by:

1

N
o = > Iy # G(xy),
=1

where N is the power of training data set.

S. Némm (CS TUT) Machine Learning - Ill 15.12.2017

Ada Boost
AdaBoost.M1. by Freund and Shcapire (1997).

e Initialize observation weights w; = 1/N,i=1,..., N.

e Form =1 to M:

» Fit weak classifier G,,, that minimizes the weighted sum error for
misclassified points.
N
€Em — Z Ww;

1=1,Gm (i) #Y:

(
» Compute «,,, = log((1 — err,,)/err,,).
» Update weights w; as

w; = w; * exp(am * I(y; # Gm(x;))), i=1,...,N.

o Output classifier:

S. Némm (CS TUT) Machine Learning - 11l 15.12.2017

Single tree vs Boosted trees

The case when classes are linearly separated is rather rare.

Boosted classifier; Accuracy:0 7
Decision tree; Accuracy: 0.893333333333 60
60
40
40
20
20
0 o @
0 > . L b}
> -20- °* o
L] . . ‘o o ®) L]
-20 o o . P e
—40 . oo ¢ (1
—40 ° s ¥ e® ®ode ° .
o ° o *°] ° oo
- . . o
. - °
—60 %% ..‘0' o® rE 4 o0 _® LA o
-80 % o
-80 -3 -2 -1 0 1 2 3 4
-3 -2 -1 0 1 2 3 4 x

. Nédmm (CS TUT) Machine Learning - 11l 15.12.2017 23 /25

Random Forests

The idea is to build large collection of de-correlated trees, and then
average them.
@ Forb=1to B:

» Draw a bootstrap sample Z* of size N from the available training data.
» Grow tree Tj. Repeat recursively for each terminal node until minimum
node size is reached.

* Select m variables from p.
* Pick the best variable among m.
* Split the node.
e Output the ensemble of trees {T},}%.
@ Prediction:
> Regression: fZ(x) = L0 Ti(x).
» Classification: CZ(z) = mode{Cy(z)} .

S. Némm (CS TUT) Machine Learning - Ill 15.12.2017

Single tree vs Random forest

The case when classes are linearly separated is rather rare.

Random forest; Accuracy: 0.973333333333

Decision tree; Accuracy: 0.893333333333 60
60
40
40 °
20
20
0 o
0 > . & “
> -209 . H .o. :
L4]
20 N L) e #0% 0] s
-40 . . D) . (1
-40 y] ? o® el e o
60 ° % ¢ .: Jof
- . ° o
. - °
60 AN ..‘0' o® g 4 . ..f s
—80 %o o
-80 -3 -2 -1 0 1 2 3 4
-3 -2 -1 0 1 2 3 4 x

. Nédmm (CS TUT) Machine Learning - 11l 15.12.2017 25 /25

