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@ Part | Neural Networks training
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Training

@ Training is iterative process which starts with initialization, when
initial weights are generated randomly or defined using some other
technique.

e During each iteration (epoch) measure of imprecision (loss function
(usually nonlinear)) is calculated then values of the weights are
updated. The idea is to solve optimization problem with respect to
loss function.

@ lterations are repeated until stopping criteria is met.

@ The choice of loss function, number of weights to identify and
computational restrictions define the choice of the training algorithm.

o Gradient descent, Newton's method, Conjugate gradient, Quasi
Newton method, Levenberg - Marquardt algorithm,

S. Némm ( CS TUT) Machine Learning - Ill 15.12.2017 3/25



Training Algorithms
o Gradient descent (steepest descent). Slow but does not require a lot
of memory. Denote V f(w;) = g; then weights update rule is
Wit1 =w; —gi -, 1=0,1,...

where 7); is the learning rate.
@ Levenberg - Marquardt algorithm. Fast but requires a lot of memory.

Loss function:
2
f=>_¢

where e; are the residuals for each point of the data set. Jacobian
matrix of the loss function:
8€i

Jij =

where 7 indexes data points and j - weights of the network. Weights
update rule (here i is the epoch identifier):

Wil = W; — (JlTJZ + /\iI)il(QJiei), 1=0,1,...

where X plays the role of a learning rate.
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Example

Data set is represented by the surface in 3D set.

Let us adopt LM algorithm to just single neuron and observe
convergence process step by step.

Initialize the process by randomly generating the weights.

Denote the sum of squared residuals as SSR
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Neuron
Consider one neuron with two inputs and logsig activation function

e Consider one neuron with two inputs (denoted x and y) and logsig
activation function. (Notation is chosen to simplify geometric
interpretation).

@ Mathematical model of such neuron is given by

1
=
1 + ew1z+w2y

@ For the values w1 = 0.5 and wy = 2 this function graph in 3D space is
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Implementation

@ Loss function:

w1Ii+w2yi) )2

f Z( (wlxz—i-wzyl) +1

@ Jacobian matrix of the loss function:
Elements of the first column:

Jil =

de; _Zixie(wmi—l-wzyi) xieZ(wll‘i"Fwai)
8w1 - ((e(w1$i+w2yi) + 1)2 + (e(w1zi+’w2yi) + 1)3)

Elements of the second column:

de; ( _ziyie(wlxi+w2yi) yieZ(w1$¢+w2y¢) )

Ji2 = 811)2 = (e(wlzi"‘w?yi) 4 1)2 + (e(wlzi—&-wgyi) + 1)3
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Neuron

Generate the surface to approximate adding some noise.

Levenberg - Marquardt algorithm uses sum of squared errors as the
loss function.

Initialize the process by randomly generating the weights.

Denote sum of squared residuals as SSR
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Initial guess, SSR = 18.94
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Epoch 2 & 4, SSR = 12.3/7.8
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Epoch 6 & 8, SSR =

Epoch: 6
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Epoch 10 & 12, SSR = 6.08/5.39
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Epoch 14 & 16, SSR =

Epoch: 14
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Epoch 18 & 20, SSR = 2.83/2.08
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Epoch 22 & 24, SSR = 1.61/1.45
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Epoch 35 & 36, SSR = 1.41592182/1.41592116
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Final result

@ Sum of squares of the residuals 1.41592116 at last iteration.
o Weights at last iteration wy; = 0.4787443 and wo = 1.99086222.

@ Could we build a better approximation?
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Part Il

o Committee learning.
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Committee learning

@ Some times referred as ensemble learning.

@ The idea is to combine a number of weak (accuracy is slightly larger
than of random guessing) classifiers into a powerful committee.

@ Motivation is to improve estimate by reducing variance and
sometimes bias.

@ Bootstrap is the technique used to assess the model quality. It
requires one to draw data sets with replacement from the training
data. The samples are independent.
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Bagging

@ Induced from the bootstrap technique (which is used to assess
accuracy of estimate).

@ Draw B samples with replacements and train the model on each
sample.

@ The bagging estimate then is defined by:
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Boosting

@ The final prediction is given by:

M
G(z) = sign(Z ame(x)).
m=1

which is weighted majority vote of classifiers G, (x). Here oy, are
weights describing contribution of each classifier.

@ While on the first view result is very similar to the bagging, there are
some major differences.

@ Two class problem where output variable coded as Y € {—1, 1}.

o For the classifier G(X) error rate is given by:

1

N
o = > Iy # G(xy),
=1

where N is the power of training data set.
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Ada Boost
AdaBoost.M1. by Freund and Shcapire (1997).

e Initialize observation weights w; = 1/N,i=1,..., N.

e Form =1 to M:

» Fit weak classifier G,,, that minimizes the weighted sum error for
misclassified points.
N
€Em — Z Ww;

1=1,Gm (i) #Y:

(
» Compute «,,, = log((1 — err,,)/err,,).
» Update weights w; as

w; = w; * exp(am * I(y; # Gm(x;))), i=1,...,N.

o Output classifier:
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Single tree vs Boosted trees

The case when classes are linearly separated is rather rare.

Boosted classifier; Accuracy:0 7
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Random Forests

The idea is to build large collection of de-correlated trees, and then
average them.
@ Forb=1to B:

» Draw a bootstrap sample Z* of size N from the available training data.
» Grow tree Tj. Repeat recursively for each terminal node until minimum
node size is reached.

* Select m variables from p.
* Pick the best variable among m.
* Split the node.
e Output the ensemble of trees {T},}%.
@ Prediction:
> Regression: fZ(x) = L0 Ti(x).
» Classification: CZ(z) = mode{Cy(z)} .
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Single tree vs Random forest

The case when classes are linearly separated is rather rare.

Random forest; Accuracy: 0.973333333333
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