
Course ITI8531: Software Synthesis
and Verification

Lecture 11: Overview of Software Synthesis Approaches and
Preliminaries of Temporal Synthesis

Spring 2019

Leonidas Tsiopoulos

Lecture slides are partly based on presentations by Moshe Vardi [8] and Nir Piterman [9]

Programming and Verification

• Verification with Model Checking:
• Given a program (model) P and a specification ϕ, check that P satisfies ϕ .
• Success:

• Usage is increasing with several available model checkers based on advanced
algorithmic methods.

• Issues:
• Designing P is hard and expensive.

• Redesigning P when P does not satisfy ϕ is hard and expensive.

• Verification with Theorem Proving:
• Similar issues as above.

• Alternative solution:
• Start from specification ϕ and synthesize P such that P satisfies ϕ .

16.04.2019 2

Synthesis – What it is about?

• The main motivation is that „if we can verify why not go directly from
specification to correct-by-construction systems by synthesis?“

• Various approaches exist:
• Deductive approach where first the realizability of a function is proved and

then the program is extracted from the proof.

• Computational approach where a transformational program is synthesized to
produce a result on termination in terms of input and output relations.
• By some called classical approach or just program synthesis.

• Reactive/Temporal approach where programs are synthesized for ongoing
computations (protocols, operating systems, robot controllers, etc).

• The focus of this course in on the reactive approach.

16.04.2019 3

Program Synthesis

• Program Synthesis is the task of discovering an executable program
from user intent expressed in the form of some constraints.

• Main challenge: Establishing a proper synergy between the human
and the synthesizer is fundamental to the success of synthesis.

16.04.2019 4

Deductive Synthesis

• Synthesis of systems which allow the user to provide insight directly
into the synthesizer

• Program can be extracted from a constructive proof of the
satisfiability of a specification.
• E.g., (∀𝑥)(∃𝑦)(𝑃𝑟𝑒(𝑥) → 𝑃𝑜𝑠𝑡(𝑥, 𝑦)

• Powerful technique but demands a high level of expertise.

• Tools available: KIDS, NuPRL, ...

16.04.2019 5

Reactive Synthesis

• „if we can verify why not go directly from specification to correct-by-
construction systems by synthesis?“

• Now we are in 2019 and still „directly“ involves several transformational
steps in the background no matter the underlying approach.

• Old topic started already in 1960s by Church.
• Given a circuit interface specification partitioned to inputs and outputs and a

behavioral specification in first order logic, determine if there is an automaton
that realizes the specification. If the specification is realizable, construct an
implementing automaton.

16.04.2019 6

History on reactive synthesis - 1

• Problem as defined by Church [1].

• Büchi and Landweber define two-player games of infinite duration
[2].

• Rabin introduces automata on infinite trees generalizing Büchi’s work
on ω-automata to trees [3].
• Simpler solution via Rabin tree automata.

16.04.2019 7

History on reactive synthesis - 2

• Pnueli in 1977 [4] proposed to use Linear Temporal Logic (LTL) rather
than MSO (monadic second-order theory of one successor function)
as specification language for less complexity.

• Vardi, Wolper and Sistla in 1983 [5] showed that the translation from
LTL to automata is of elementary (exponential) complexity.

• Safra in 1988 [6] showed that the construction of tree automata for
strategy trees wrt LTL specification is doubly exponential (using [5]).
• Procedure for the determinization of Rabin automata.

• In 1989 Pnueli and Rosner [7] established LTL realizability to be
2EXPTIME complete using Safra’s approach.
• Very high complexity when determinizing non-deterministic automata!
• Caused halting of research in this field for many years.

16.04.2019 8

History on reactive synthesis - 3

• From beginning of 2000s this research topic was brought back to the
scene with several approaches offering „Safraless“ solutions to avoid
the very expensive determinisation step and also better algorithms
working on „symbolic“ representation of the state space.

• The focus of this part of the course will be on one such approach
implemented with the tool Acacia+.

16.04.2019 9

System specification: satisfiability vs realizability

• Satisfiability: Exists some behavior that satisfies the specification.

• Realizability: Exists system that implements the specification and it
must work for all inputs (controlled by the environment) to the
system.

16.04.2019 10

Example on satisfiability

• Example: Printer specification

• Ji - job i submitted, Pi - job i printing, i ∈ {1,2} .

• Safety property: two jobs are not printing together - always ¬(P1 ∧ P2)

• Liveness property: every job is eventually printed
• always 𝑖=1ٿ

2 (𝐽i → 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑃i)

• Is specification satisfiable? Yes!

• Model M: A single state where Ji , Pi are all false.

• Can we extract a program from M? No!

• Why? M handles only one input sequence.

• Ji are inputs controlled by the environment. We need a system that handles all
input sequences.

• Only satisfiability is not enough for synthesis!

16.04.2019 11

Formal context for synthesis

• A specification will be in LTL over input and output propositions.

• A system will be an automaton with output.

• Input and output are combined to create a sequence of assignments
to propositions.

• All possible infinite paths over the automaton should satisfy the
specification.

16.04.2019 12

LTL preliminaries

• Formal language which extends the propositional Boolean logic.

• Variables: atomic propositions, e.g., p and q.

• A set of atomic propositions partitioned to inputs and outputs denoting the
basic facts about a system and its environment.

• Usual Boolean operators are allowed, e.g., p → q (¬p ∨ q) is an LTL formula,
but it refers to the first element of an infinite sequence.

16.04.2019 13

LTL preliminaries – Operators and formulae

Temporal operators

• G: globally (always), e.g., G(p → q) means “in each element of the sequence,

p → q holds”.

• F: in the future, e.g., F(p → q) means “for some element of the sequence, p → q
holds”.

• X: on the next step, e.g., X(p → q) means “p → q holds for the second element of
the sequence”.

• U: until, e.g., p U q means “q must happen at some step, and the sequence must
satisfy p until (non-inclusive) q happens”.

• Linear Temporal Logic formulae are constructed as follows:

• ϕ ::= p ‖ϕ∧ϕ ‖ ¬ϕ ‖ϕ1 Uϕ2 ‖ ...

16.04.2019 14

LTL Semantics

• A model for an LTL formula is an infinite sequence 𝜎 = 𝜎0, 𝜎1,
… with a designated location 𝑗 ≥ 0.

• Each letter 𝜎𝑖 is a set of propositions true at time 𝑖.

• Formula 𝜑 holds over sequence 𝜎 in location 𝑗 ≥ 0, denoted
(𝜎, 𝑗) ⊨ 𝜑, if:
• If 𝜑 is a proposition (𝜎, 𝑗) ⊨ 𝜑⟺ 𝜑 ∈ 𝜎j

• (𝜎, 𝑗) ⊨ ¬𝜑⟺ (𝜎, 𝑗) |≠ 𝜑

• (𝜎, 𝑗) ⊨ (𝜑1 ∨ 𝜑2) ⟺ (𝜎, 𝑗) ⊨ 𝜑1 or (𝜎, 𝑗) ⊨ 𝜑2

• (𝜎, 𝑗) ⊨ ϕ1 Uϕ2 ⟺∃k≥j . (𝜎, k) ⊨ 𝜑2 and ∀j ≤ l < k . (𝜎, l) ⊨ 𝜑1

• …
16.04.2019 15

LTL and verification

• Kripke structure M satisfies LTL formula 𝜑 (written: M ⊨ 𝜑), if all paths in
M which start in M’s initial states satisfy 𝜑.

• Which of these LTL formulae are satisfied by the Kripke
structure on the right?

• 𝜑1 = Gp
• 𝜑2 = F(¬p ∧ ¬q)
• 𝜑3 = p U (¬p ∧ ¬q)
• 𝜑4 = GF(p ∧ q)

• Only 𝜑4

16.04.2019 16

Automata
• Systems with discrete states.

• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0 〉, where
• Σ – a finite input alphabet.
• 𝑄– a finite set of states.
• 𝛿: 𝑄 × Σ → 2𝑄 – a transition function associating with state and an input letter a set

of successor states.
• 𝑞0– an initial state.

• An input word 𝑤 = 𝜎0, 𝜎1, … is a sequence of letters from Σ.

• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that
for every i ≥ 0 we have qi+1 ∈ 𝛿(𝑞𝑖, 𝜎𝑖) .

• An automaton is deterministic if for every 𝑞 ∈ 𝑄 and 𝜎 ∈ Σ we have

|𝛿(𝑞, 𝜎)|≤ 1.

• Several variations exist: Rabin, Büchi, ”Safety”, Uppaal Timed Automata, ...

16.04.2019 17

Games for Synthesis – Why?

• We need to synthesize a system that implements the specification
and it must work for all inputs (controlled by the environment) to the
system.

• Controlling so that uncontrollable events do not lead to damage.

• This can be a two-player game.

• Realizability with regard to games: Existence of winning strategy for
the system in a game against the environment.
• Addressed (rather) efficiently by Pnueli and Rosner [7] providing better

algorithms (based on μ-calculus and least fixpoint) compared to previous
approaches.

• But still these approaches were based on Safra’s highly complex determinizing
step.

16.04.2019 18

Games

• Formally, a game is 𝐺 = 〈𝑉, 𝑉0, 𝑉1, 𝐸, 𝛼〉, where
• 𝑉 is a set of nodes.
• 𝑉0 and 𝑉1 form a partition of 𝑉. 𝑉0 concern the System and 𝑉1 the Environment.
• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

• A play is 𝜋 = 𝑣0, 𝑣1, …
• 𝛼 is a set of winning plays.

• A strategy for player 𝑖 is a function 𝑓𝑖 : 𝑉∗ ⋅ 𝑉𝑖→ 𝑉 such that
(v, 𝑓𝑖(𝑤 ⋅ 𝑣)) ∈ 𝐸.

• A play 𝜋 = 𝑣0, 𝑣1, … is compatible with 𝑓𝑖 if for every 𝑗 ≥ 0 such that 𝑣𝑗 ∈ 𝑉𝑖
we have 𝑣𝑗+1 = 𝑓𝑖 (𝑣0 ⋯ 𝑣𝑗).

• A strategy for player 0 is winning if every play compatible with it is in 𝛼. A
strategy for player 1 is winning if every play compatible with it is not in 𝛼.

• A node 𝑣 is won by player 𝑖 if she has a winning strategy for all plays
starting from 𝑣.

16.04.2019 19

A play of a game

Environment

System

16.04.2019 20

Games - Realizability and Synthesis
• Realizability: Exists winning strategy for System.

• Synthesis: Obtain such winning strategy. How?
• With a Transducer - Moore Machine (also Mealy depending on approach).

• Formally, T = 〈Δ,Σ,Q,q0,α, β〉, where
• Δ – input alphabet
• Σ – output alphabet
• Q – states
• q0 – initial state
• α : Q × Δ→ Q – transition function
• β : Q → Σ – output function.

• A transducer representing a winning strategy can be extracted from
the winning states of the system after solving the game.
• Details in the next lectures.

16.04.2019 21

Game types for synthesis

• Safety games
• Avoiding the „bad“ state of the safety automaton.

• Reachability games – dual to safety games.
• Trying to reach a target state.

• Büchi games
• Accepting states from which system can force returning to an accepting state

infinitely often.

• Almost the same as for reachability games.

16.04.2019 22

Plan for next lecture

• Short overview of some state-of-the-art synthesis approaches based
on LTL or fragments of it.
• Generalised Reactivity (1) fragment of LTL and reactive synthesis, by Pnueli,

Piterman and others.

• Safety LTL and synthesis by Tabayara and Vardi.

• Symbolic bounded synthesis by Ehlers.

• Acacia+ LTL synthesis – Will learn the details of it in the rest of this course.

• Lightweight comparison between them.

• The rest of the lecture will be dedicated to LTL transformation to
automata and solving of the relevant games for these approaches and
generating the winning strategy for the synthesised system.
• Emphasis on Acacia+ approach. http://lit2.ulb.ac.be/acaciaplus/

16.04.2019 23

http://lit2.ulb.ac.be/acaciaplus/

References
• 1) A. Church, Logic, Arithmetic and Automata, Journal of Symbolic Logic, 29 (4), 1964.

• 2) J. R. Büchi, L. H. Landweber, Solving Sequential Conditions by Finite-State Strategies, Transactions of the AMS, Vol. 138
(Apr. 1969).

• 3) M. O. Rabin, Automata on Infinite Objects and Church's Problem, American Mathematical Society, Boston, MA, USA,
1972.

• 4) A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer
Science (SFCS '77). IEEE Computer Society, Washington, DC, USA, 46-57. DOI: https://doi.org/10.1109/SFCS.1977.32, 1977.

• 5) P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In Proc. 24th IEEE Symposium on
Foundations of Computer Science, pages 185–194, Tucson, 1983.

• 6) S. Safra, On the complexity of ω-automata. In: Proc. 29th Annual Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society Press (1988).

• 7) A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL '89) ACM, NY, USA, 179-190.
DOI=http://dx.doi.org/10.1145/75277.75293, 1989

• 8) M. Y. Vardi, The Siren Song of Temporal Synthesis

• http://www.dis.uniroma1.it/~kr18actions/slides/invitedMosheVardi.pdf

• 9) N. Piterman, Games and Synthesis, EATCS Young Researchers School, 2014

• http://eatcs-school.fi.muni.cz/_media/piterman.pdf

16.04.2019 24

https://doi.org/10.1109/SFCS.1977.32
http://www.dis.uniroma1.it/~kr18actions/slides/invitedMosheVardi.pdf
http://eatcs-school.fi.muni.cz/_media/piterman.pdf

