
Lecture 4
Module I: Model Checking

Topic: CTL Symbolic Model Checking

J.Vain

03.03.2022

Our Roadmap [based on McMillan et al. LICS 90]

• Recall that

1. CTL temporal operators can be expressed using base operators EX, EG and
EU;

2. the base operators can be expressed as fixpoints and can be computed
iteratively;

3. explicit state notation can be transformed to symbolic notation by repre-
senting sets of states S and the transition relation R as Boolean logic
formulas

• Then, fixpoint computation becomes formula manipulation, that includes:

1. pre-image (EX) computation and existentially bound variable elimination;

2. conjunction (intersection), disjunction (union), negation (set difference), and
equivalence checks;

3. Using Binary Decision Diagrams (BDDs) as efficient data structure for
computing truth values of boolean logic formulas.

Example: Mutual Exclusion Protocol
(revisited)
Two concurrently executing processes are trying to enter their critical

section without violating mutual exclusion condition

Process 1:

while (true) {

out: a := true; turn := true;

wait: await (b = false or turn = false);

cs: a := false;

}

||

Process 2:

while (true) {

out: b := true; turn := false;

wait: await (a = false or turn=true);

cs: b := false;

}

Encoding State Space S

• Encode the state space using only boolean variables

• We have two variables for program counters: pc1, pc2
with domains {out, wait, cs}

• We need two boolean variables per program counter to encode their 3 values:
for pc1: pc10 and pc11 for pc2: pc20 and pc21

• Encoding:

pc1 = out pc10  pc11

pc1 = wait pc10  pc11

pc1 = cs pc10  pc11

• The other three variables turn,a,b are already booleans.

Encoding State Space S
• Each state can be written as a tuple of boolean variables:

(pc10, pc11, pc20, pc21, turn, a, b)

• So, after encoding:
(o,o,F,F,F)becomes (F,F,F,F,F,F,F)
(o,c,F,T,F)becomes (F,F,T,T,F,T,F)

• We map boolean state vector to logic formula on variables pc10, pc11, pc20, pc21,
turn, a, b to represent state vector symbolically:

{(F,F,F,F,F,F,F)} ⟼ pc10   pc11  pc20   pc21   turn  a  b

{(F,F,T,T,F,F,T)} ⟼ pc10   pc11  pc20  pc21   turn  a  b

and represent the set of states by disjoining individual state formulas:

{(F,F,F,F,F,F,F), (F,F,T,T,F,F,T)} ⟼

pc10   pc11  pc20   pc21   turn  a  b

 pc10   pc11  pc20  pc21   turn  a  b
 pc10   pc11  turn  b  (pc20  pc21 b)

Encoding Initial States

• We can also write the initial states as a boolean logic formuli
• recall that, initially: pc1=o and pc2=o
• but other variables may have any value in their domain

In set notation:

I  {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F),
(o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,T),
(o,o,T,T,F), (o,o,T,T,T)}

mapping it to logic notation:

⟼ pc10   pc11  pc20   pc21

This logic formula tells that programm counters pc1 and pc2 are set to
false and other variables may have arbitrary boolean values (they do not
influence on the truth value of the formula)

Encoding the Transition Relation

• We use boolean logic formulas and primed variables to encode the transition
relation R.

• So we use two sets of variables:
• Current state variables: pc10, pc11, pc20, pc21, turn, a, b
• Next state variables: pc10’, pc11’, pc20’, pc21’, turn’, a’, b’

• For example, we can write a boolean logic formula for the command of
process 1:

cs: a := false;

Formula below describes the effect of executing command symbolically:

pc10  pc11  pc10’  pc11’  a’ 
(pc20’pc20) (pc21’pc21)  (turn’turn)  (b’b)

Let’s denote this formula with symbol R1c

Pgm. counter variables that change Data variable that changes

Other data variables that do not change

Encoding the Transition Relation

• Similarly we can write a formula Rij for each command in the program

• Then the overall transition relation is is disjunction
R  R1o  R1w  R1c  R2o  R2w  R2c

• Having the model M in symbolic form, we also need to know for
symbolic model checking of CTL formula  how to interprete the
temporal operators of  on this symbolic representation of M.

Symbolic Pre-Image Computation
• Recall the pre-image is a functional

EX : 2S 2S

which is defined (in set notation) as:

EX() = { s | (s, s’) 〚 R〛 and s’ 〚〛}

• We can represent pre-image symbolically as usual 1st order logic formula

EX()  V’ (R   [V’ / V])

where

• V : values of Boolean state variables in the current-state

• V’ : values of Boolean state variables in the next-state

•  [V’ / V] : renaming variables in  by replacing current-state variables

with the corresponding next-state variables

• V’ f: means existentially quantifying variables V’ in f

• R denotes the symbolic formula of transition relation

Renaming (or substitution)

Example:

• Assume that we have two variables x, y

• and sets V = {x, y} and V’={x’, y’}

• Renaming example:

Given formula   x  y ,

we apply variable substitution [V’ / V] to variables in formula  :
[V’ / V]  (x  y) [V’ / V]  x’  y’

Note: for correct substitution the order of variables must be fixed in V’
and V

Existential Quantifier Elimination

• Given a boolean formula f and variable v we can rewrite quantified formula as
v f  f [true/v]  f [false/v] (*)

Here, we eliminate the existential quantifier by doing following:
- first, substitute the existentially bound variable v with true in the formula f

- then substitute v with false in f and
- then take the disjunction of two results.

• Example: Let the transition relation conjoined with  be f  x  y  x’  y’

The pre-image of f according to (*) is

V’ f  x’ (y’ (x  y  x’  y’)) % after applying (*) to y’ we get

 x’ ((x  y  x’  y’)[true/y’]  (x  y  x’  y’)[false/y’])

 x’ (x  y  x’  true  x  y  x’  false)  x’(x  y  x’)

 (x  y  x’)[true/x’]  (x  y  x’)[false/x’])

 x  y  true  x  y  false

 x  y

An Extremely Simple Example

Variables: x, y: boolean

Set of explicit states:
S = {(F,F), (F,T), (T,F), (T,T)}

Set of states symbolically:
S  true

Initial state condition:
I   x   y

Transition relation (after simplification):
R  x’=x  y’=y  x’= x  y’= y

(““ means “by definition“)

F,T

F,F

T,T

T,F

An Extremely Simple Example – EX 

- Given   x  y and R x’=x  y’=y  x’= x  y’= y

- Compute EX()

EX()  V’ R  [V’ / V]

 V’ R  x’  y’

 V’ (x’=x  y’=y  x’=x  y’=y)  x’  y’

 V’ (x’= x  y’=y)  x’  y’ (x’=x  y’= y)  x’  y’

 V’ x  y  x’  y’ x  y  x’  y’

x  y  x  y

The states in pre-image

EX(x  y)  x  y  x  y, are denoted with purple in KS diagram.

In terms of explicit states EX({(T,T)})  {(F,T), (T,F)}

F,T

F,F

T,T

T,F

| by distrib. law

| by 

| by substit

| by  -elimination

| by substit



An Extremely Simple Example -EF

Let’s compute EF(x  y) on model M by applying

fixpoint algorithm (see Lecture 4).

The fixpoint computation sequence provides symbolic values:

false, xy , xy  EX(xy) , xy  EX (xy  EX(xy)) , ...

If we do the EX computation iteratively, we get a sequence of symbolic states:

Result: false, x  y , x  y  x  y  x  y, true

Step no:

EF(x  y)  true (means full state space)

In terms of explicit states EF({(T,T)})  {(F,F),(F,T), (T,F),(T,T)}

F,T

F,F

T,T

T,F

0 1 2 3

1

2

3

An Extremely Simple Example

Property is not satisfied in T

saw that

An Extremely Simple Example – AF

• Let’s try one more property AF(x  y)

• To check this property we first convert it to a formula which uses only
temporal operators in our basis:

AF(x  y)   EG((x  y))

i.e.,

if we can find such a initial state which satisfies EG((x  y)),

then we know that the transition system T does not satisfy property

AF(x  y)

An Extremely Simple Example

F,T

F,F

T,T

T,F

0. 1. 2.

0

1

This is fixpoint

Symbolic CTL Model Checking Algorithm (in
general)

• Translate the formula to a formula which uses the CTL basis

• EX, EG,  EU

• Atomic propositions can be interpreted in states by inspecting whether the
formula is in the set AP of given state labels.

• For EX compute the pre-image using existential variable elimination

• For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm (1)

Check (f : CTL formula) :

(here we use logic encoding of sets of states)

case: f  AP return f;

case: f    return Check();

case: f     return Check()  Check();

case: f     return Check()  Check();

case: f  EX  return V’. R  Check()[V’/V];

Symbolic Model Checking Algorithm (2)

Check(f)

…

case: f  EG 

Y := true; // initializing Y (includes all states)

P := Check(); // P – set of states where  is true

Y’:= P  Check(EX(Y));

while (Y  Y’) // fixpoint condition

{

Y := Y’; // save previous step result

Y’ := P  Check(EX(Y)); // find pre-image

}

return Y; //Y – set of states where EG  is true

Symbolic Model Checking Algorithm (3)

Check(f)

…

case: f   EU 

Y := false; //(empty set)

P := Check(); // P–set of states where  is true

Q := Check(); // Q–set of states where  is true

Y’ := Q  [P  Check(EX(Y))]; // here Y’= Q
while (Y  Y’)

{

Y := Y’; P-states from which states of Y are 1 step reachable

Y’:= Q  [P  Check(EX(Y))];

}

return Y;

Binary Decision Diagrams (BDDs)

• Binary Decision Diagrams (BDDs)

• An efficient data structure for boolean formula manipulation.

• There are BDD packages available, e.g.
https://github.com/johnyf/tool_lists/blob/master/bdd.md

• BDD data structure can be used to implement symbolic model checking
algorithms discussed above because predicate transformers include
boolean connectives.

• BDDs are canonical representation for boolean logic formulas, i.e.

• given formulas F and G, they are F  G if their BDD representations
are identical.

https://github.com/johnyf/tool_lists/blob/master/bdd.md

Binary Decision Trees (BDT)
• Fix the order of variables in the boolean formula,

• Build a tree where in each branch of the same level the node is labeled with
same variable and

• Outgoing edges from node are labeled with possible values of this variable

• Examples of BDT-s for boolean formulas of two variables:

Variable order: x, y

F

F

F

T

T

T

x

y y

T

F T

T

x  y

F

F

F

T

T

F

x

y y

F

F T

T

x  y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

false

Transforming BDT to BDD

• BDT has a lot of overhead and can be optimized to more compact form
of directed acyclic graph – binary decision diagram (BDD).

• Method:

• Repeatedly apply the following transformations to a BDT:

• Remove duplicate terminals
• redraw connections to remaining terminal nodes that have same

label as deleted ones

• Remove duplicate non-terminals
• redraw connections to remaining non-terminal nodes that have

same label as deleted ones

• Remove redundant tests

Mapping Binary Decision Trees to BDDs

F

F

F

T

T

T

x

y y

T

F T

T

x  y

F

F

F

T

T

F

x

y y

F

F T

T

x  y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

false

F

F

F

T

T

T

x

y

F

F

F

T

T

T

x

y
F

F T

T

x F

- redundant node

Good News About BDDs

Bad News About BDDs

• The size of a BDD can be exponential in the number of boolean variables

• The sizes of the BDDs are very sensitive to the ordering of variables. Bad
variable ordering can cause exponential increase in the size of the BDD

• There are functions which have BDDs that are exponential for any
variable ordering (for example binary multiplication)

• Pre-image computation requires existential variable elimination

• Existential variable elimination can cause an exponential blow-up in
the size of the BDD

BDDs are Sensitive to Variables Order
Identity relation for two variables: (x’  x)  (y'  y)

T

F

F

F

T

F

y

y’

F

F

T

T

x

x’ x’

y’

T

TT
F

Variable order: x, x’, y, y’

For n variables we have 3n+2 nodes

T

F

F

F T

F

x’

y’

F

F

T

T

x

y y

y’

T

T

T

F

Variable order: x, y, x’, y’

For n variables we have 3 2n –1 nodes

x’ x’x’

T

F

F T

F

T

LTL and CTL* Model Checking complexity?

• The complexity of the model checking problem for LTL and CTL* is:

• (|S|+|R|)  2O(|f|)

where | f | is the number of logic connectives in f.

• Typically the size of the formula is much smaller than the size of the transition
system

• So the exponential complexity in the size of the formula is not very critical in
practice, the property specifications typically involve few variables and logic
operators.

