Information—Theoretic Security

Probabilistic Cipher Model

2 idependent random variables: X with range Ry (the set of plaintexts), and Z with range Ry
(the key space).

No assumptions are made w.r.t. the probability distribution of X, however, we assume that Z
is uniformly distributed and independent of X.

The encryption function F.,(z) = y. The set of ciphertexts Y is a projection of X x Z under an
equivalence relation ~ stating that (a,b) ~ (¢, d) whenever Ep(a) = E4(c). This projection forms a
factor set that we will call XZ, and its corresponding range Rxz.

Information-Theoretic Security of a 1-bit XOR Cipher

In a 1-bit XOR cipher, the set of plaintexts, the set of ciphertexts, and the set of keys is {0,1} —
possible values that a bit can take. The encryption function E,(z) =z @ z.

1-bit XOR cipher is information—theoretically secure, if the ciphertexts are independent of the
plaintexts: )f()é X =2]Y =y] = )1?2 [X = z]. This means that the ciphertext contains no information

about the plaintext, and cannot leak it. Since
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The conditional probability of a plaintext given a ciphertext is
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and therefore the 1-bit XOR cipher is information—theoretically secure.

Theorem 1. If Z is independent of X, Z is uniformly distributed and for every plaintext x and
for every ciphertext y there is a unique key z such that E,(x) = y, then the cipher is unbreakable.

Proof. See lecture slides. O

It is possible to show that in a 1-bit XOR cipher for every pair of plaintext x and ciphertext y
there is a unique key z such that z @ z = y.

XOR operation is identical to addition in Zs. Therefore, we can encode the encryption function
asy=x®z=2x+ 2z (mod 2). For every plaintext—ciphertext pair (z,y) there is a key z =y — x
(mod 2) such that x + 2z = z +y — x = y. To show that such z is unique, assume there exists
another key 2’ # z such that = + 2’ =y (mod 2). In other words,

r+z=y=z+2 (mod2) = z—2'=0 (mod2) = z=2" (mod?2) .

Since for every plaintext—ciphertext pair (x,y) there exists a unique key z, by Theorem 1 the 1-bit
XOR cipher cipher is information—theoretically secure.

Information—Theoretic Security of a Shift Cipher

The encryption function of a shift cipher is y = x 4+ z (mod 26). Following the same reasoning as
above, it is possible to show that for every plaintext—ciphertext pair (x,y) there exists a unique key
z =y —x (mod 26). Hence, by Theorem 1 the shift cipher is information—theoretically secure.

Inforation—Theoretic Security of a Substitution Cipher

A substitution cipher is a cipher, where the key is a permutation ¢ which puts every plaintext x into
one-to-one correspondence with a unique ciphertext y = o(x). Since a permutation is a bijective
map, it is invertible, and therefore any ciphertext can be decrypted into corresponding plaintext.
Hence, the decryption identity holds o~ (o(z)) = (67t 0 0)(z) = 2.

Since there are 26 letters in English alphabet, there are 26! possible permutations. If we fix one
specific plaintext—ciphertext pair (x;,y;), then there exist 25! permutations of the remaining letters.
In other words, for every plaintext—ciphertext pair (x,y) there exist 25! unique keys z such that
y = z(x). Therefore, we cannot prove information—theoretical security using Theorem 1 above.

Instead, we will show that Pr[X = z|Y = y] = Pr[X = z].
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This tells us that Y is uniformly distributed.
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Therefore, the substitution cipher is information—theoretically secure.



