Specitying Contracts for
Methods

Module Ill Lecture 4

Assume-quarantee specifications as program
annotations

Recall some definitions

® [ormal Specification - using mathematical nota-
tion to give a precise description of what a pro-
gram should do

® Formal Verification - using precise rules to math-
ematically prove that a program satisfies a for-
mal specification

® [Formal Development (Refinement) - developing
programs in a way that ensures mathematically
they meet their formal specifications

ITI8610, Module Ill, Lecture 4: Program specifications

Introduction to Hoare style specifications

e Verification of programs is based on formal specifications and on related verification method.

We will use Floyd-Hoare logic (FHL)

e Proof systems of the FHL style depend on particular programming language with its syntax and
semantics

* |n this lecture

- we study the specification of deterministic sequential while-programs
- and extend this to JML specifications of OO programs, namely, to method contracts.

ITI8610, Module Ill, Lecture 4: Program specifications

Programs as state transition systems

* Programs are structured specifications of state transition systems.

 Programming language defines constructs for specifying single transitions and
transition compositions.

e State components specified using datatypes are referred in conditions of
command constructs like if-, while-, for-, case-command etc.

ITI8610, Module Ill, Lecture 4: Program specifications

Some notations

* Imperative programs are built out of commands like assignment, if-,
while-, for-, case, etc

e Formally, the terms '‘program’'and 'command' are synonymous.

 'Program' will only be used for commands representing complete
algorithm.

e The ‘assertion’ is used for conditions on program variables that occur in
correctness specifications.

ITI8610, Module Ill, Lecture 4: Program specifications

Imperative programs - state

e Executing an imperative program has the effect of
changing the state i.e. the values of program variables,

but

they may have states consisting of other things than
the values of variables (e.g. |/O ports).

ITI8610, Module Ill, Lecture 4: Program specifications

Imperative programs - execution

 To use an imperative program (or method)

e first establish a state,
i.e. set some variables to have values of interest

* then execute the program,
(to transform the initial state into a final one)

e inspect the values of variables in the final state to get the result.

ITI8610, Module Ill, Lecture 4: Program specifications

Simple while-language

% Expressions

« E -:= N|V|EL1+E2|E1-E2|E1xE2] ..
« B ::= T|F]|E1=E2]E1<E2] ..
e C ::= %Commands:
SKIP
| V := E
| V(E1) := E2
| C1 ; C2

| IF B THEN C1 ELSE C2
| BEGIN VAR V1;..;VAR Vn; C END

| WHILE B DO C
| FOR V = E1 UNTIL E2 DO C

ITI8610, Module Ill, Lecture 4: Program specifications

Terminology and notations

e V1, V2, ..., Vn
- valuation of program (and control) variables
- gives a rule how the program state changes

e C1, C2, ... , Cn
- command that includes all the commands in the algorithm
e C
e Arithmetic expression gives a value: El, E2, ... , En
e Boolean expression gives a truth-value: B1l, B2, ... , Bn

— logical expression on program variables in the pre- and
postconditions of the specification, also in invariants

e S1, S2, ... , Sn

ITI8610, Module Ill, Lecture 4: Program specifications

Formal specification

Describes the intended behaviour of the program

Specifies what the program must do

Has well-defined and that helps avoiding
specifications

Can be used to prove the

Can be used to generate and

We will use formalism that is based on FHL and predicate calculus

ITI8610, Module Ill, Lecture 4: Program specifications

and

Hoare’s notation Sir Tony Hoare

e C.A.R. Hoare introduced the following nota-
tion called a partial correctness specification for
specifying what a program does:

{P} O {Q}
where:

e (! is a program from the programming language
whose programs are being specified

e P and () are conditions on the program variables

used in (

ITI8610, Module Ill, Lecture 4: Program specifications

Partial Correctness

e An expression {P} C {Q} is called a partial cor-
rectness specification

e P is called its precondition

e () its postcondition

o {P} C {Q} is true if
e whenever (' is executed in a state satisfying P

e and :f the execution of C' terminates

e then the state in which (’s execution terminates sat-
isfies ()

ITI8610, Module Ill, Lecture 4: Program specifications

Examples

o {X=1}Yv:=Xx{Y=1}

e This says that if the command Y:=X is executed in a
state satisfying the condition X =1

1.e. a state in which the value of Xis 1

then, if the execution terminates (which it does)

then the condition Y = 1 will hold

Clearly this specification is true

ITI8610, Module Ill, Lecture 4: Program specifications

Examples

o {X=1}Y:=X {Yy=2}

e This says that if the execution of Y:=X terminates
when started in a state satisfying X =1

e then Y = 2 will hold

e This is clearly false

e {X=1} WHILE T DO SKIP {Y = 2}

e This specification is true!

ITI8610, Module Ill, Lecture 4: Program specifications

Total correctness

e A stronger kind of specification is a total correct-
ness specification

e There is no standard notation for such specifications
e We shall use [P] C Q]
e A total correctness specification [P| C [Q] is
true if and only if

e Whenever (' is executed in a state satisfying P, then
the execution of C' terminates

e After C' terminates () holds

ITI8610, Module Ill, Lecture 4: Program specifications

Example

e [X=1] Y:=X; WHILE T DO SKIP [Y = 1]

e This says that the execution of Y:=X;WHILE T DO SKIP
terminates when started in a state satisfying X =1

e after which Y =1 will hold

e This is clearly false

ITI8610, Module Ill, Lecture 4: Program specifications

Total correctness

e Informally:

Total correctness =
Termanation + Partial correctness

e Total correctness is the ultimate goal

e usually easier to show partial correctness and termi-
nation separately

ITI8610, Module Ill, Lecture 4: Program specifications

Total correctness

e Termination is usually straightforward to show,
but there are examples where it is not: no one
knows whether the program below terminates
for all values of X

WHILE X>1 DO
IF 0ODD(X) THEN X := (3xX)+1 ELSE X := X DIV 2

e The expression X DIV 2 evaluates to the result of
rounding down X/2 to a whole number

e Exercise: Write a specification which is true if
and only if the program above terminates

ITI8610, Module Ill, Lecture 4: Program specifications

Examples

o {T} C{Q}
e This says that whenever (' halts, () holds
o {P} C{T}

e This specification is true for every condition P and
every command C

e Because T is always true

ITI8610, Module Ill, Lecture 4: Program specifications

Examples

o [P]CIT]
e This says that (' terminates if initially P holds

e It says nothing about the final state

o [T| C [P]

e This says that (' always terminates and ends in a
state where P holds

ITI8610, Module Ill, Lecture 4: Program specifications

A more complicated example
{T}

BEGIN
R:=X;
N:=0;

WHILE Y<R DO
BEGIN R:=R-Y; Q:=Q+1 END
END
{R<Y A X=R+(YxQ)}

e Thisis {T} C {R<Y A X=R+ (Y xQ)}

e where C is the command indicated by the braces
above

e The specification is true if whenever the execution
of C halts, then Q is quotient and R is the remainder
resulting from dividing Y into X

e It is true (even if X is initially negative!)

e In this example a program variable Q is used. This
should not be confused with the () used in previous
examples to range over postconditions

ITI8610, Module Ill, Lecture 4: Program specifications

Annotate First

e It is helpful to think up these statements, be-
fore you start the proof and annotate the pro-
gram with them

e The information is then available when you need it
in the proof

e This can help avoid you being bogged down in details

e The annotation should be true whenever control
reaches that point In program!

23

Annotation example

¢ Example, the following program could be an-
notated at the points indicated.

1}
BEGIN
R:=X;
Q:=0; {R=X A Q=0}-
WHILE Y<R DO {X = R+Y><Q}
BEGIN R:=R-Y; Q:=Q+1 END
END
{X = R+¥xQ A R<Y}

24

WHILE annotation

e A correctly annotated total correctness specifi-
cation of a WHILE-command thus has the form

[P] WHILE S DO {R}[E] C [Q]
where R 1s the invariant and £ the variant

e Note that the variant is intended to be a non-

negative expression that decreases each time
around the WHILE loop

e The other annotations, which are enclosed in
curly brackets, are meant to be conditions that
are true whenever control reaches them

Some exercises

¢ When is [T| C' [T| true?

e Write a partial correctness specification which
is true if and only if the command C' has the
effect of multiplying the values of X and Y and
storing the result in X

e Write a specification which is true if the execu-
tion of (' always halts when execution is started
in a state satisfying P

ITI8610, Module Ill, Lecture 4: Program specifications

From imperative to OOP specifications

e Imperative part in OOP concerns methods

e Method specifications in JML:

method-specification ::= specification | extending-specification
extending-specification :-:= also specification

specification ::= spec-case-seq [redundant-spec]| redundant-spec
spec-case-seq ::= spec-case [also spec-case | . . .

* Method-specification can include any number of spec-cases, joined by the keyword al so, as well as
a redundant-spec

e Each of the spec-cases specifies a behavior that must be satisfied by a correct implementation of the
method

e Whenever a call to the specified method or constructor satisfies the precondition of one of its spec-
cases, the rest of the clauses in that spec-case must also be satisfied by the implementation

Method specification

 The spec-cases in a method-specification can have several forms:

spec-case ::= lightweight-spec-case | heavyweight-spec-case| model-
program

* heavyweight specification cases, which start with one of the keywords:
behavior, normal behavior or exceptional behavior

* lightweight specification cases do not contain these behavior keywords

Access Control in specification Cases

 Heavyweight specification cases may be declared with an explicit access modifier:
privacy :-:= public | protected | private
e The access modifier of the case cannot allow more access than the method being
specified.

e Example:
* a public method may have a private behavior specification,
* butaprivate method may not have a public specification.

* A heavyweight specification case without an explicit access modifier is considered
to have default package access.

Lightweight specification cases

e Do not specify an access modifier,

e their access modifier is implicitly the same as that of method being specified.
e For example,

 a lightweight specification of a public method has public access, implicitly,
e a lightweight specification of a private method has private access, implicitly.

This is a different default than that for heavyweight specifications, where an
omitted access modifier always means package access.

* A lightweight specification case can be understood as syntactic sugar for a behavior
specification case

Lightweight Specification Cases: Syntax

lightweight-spec-case ::= generic-spec-case

generic-spec-case ::= [spec-var-decls] spec-header [generic-spec-body] |
[spec-var-decls] generic-spec-body

generic-spec-body ::= simple-spec-body |{]generic-spec-case-seq |}

generic-spec-case-seq :-:= generic-spec-case [also generic-spec-case] ...

spec-header ::= requires-clause [requires-clause] ...

simple-spec-body ::= simple-spec-body-clause [simple-spec-body-clause] ...

simple-spec-body-clause ::= diverges-clause | assignable-clause |

accessible-clause] captures-clause | callable-clause | when-clause I
working-space-clause| duration-clause | ensures-clause | signals-only-
clause | signals-clause | measured-clause

Example: Lightweight vs Heavyweight Spec. Cases

Lightweight

Corresponding Heavyweight (with explicit defaults)

package org.jmlspecs.samples. jmlrefman;
public abstract class Lightweight {
protected boolean P, Q, R;

protected int X;

/*@ requires P;

@ assignable X;

@ ensures Q;

@ signals (Exception) R;
@*/
protected abstract int m() throws Exception;

}

package org.jmlspecs.samples. jmlrefman;
public abstract class Heavyweight {
protected boolean P, Q, R;

protected iInt X;

/*0@ protected behavior

requires P;

diverges false;

assignable X;

when \not specified;

working_space \not specified;
duration \not specified;

ensures Q;

signals _only Exception;

signals (Exception) R;

@*/

protected abstract int m() throws Exception;

}

SEOESOESOSEOESORONSOY(S)

ITI8610, Module lll, Lecture 4: Program specifications

Example explanation:

 the default for an omitted clause in a lightweight specification is \not_specified for all
clauses, except diverges, which has a default of false, and sighals.

* The default for an omitted signals clause is to only permit the exceptions declared in the
method's header to be thrown

Heavyweight specification Cases

There are three kinds of heavyweight specification cases, called behavior, normal behavior, and
exceptional behavior specification cases, beginning (after an optional privacy modifier) with the

one of the keywords behavior, normal_behavior, or exceptional behavior,
respectively.

heavyweight-spec-case ::= Dbehavior-spec-case
| exceptional-behavior-spec-case

| normal-behavior-spec-case

* Like lightweight specification cases, normal behavior and exceptional behavior specification cases
can be understood as syntactic sugar for special kinds of behavior specification cases

Semantics of flat behavior specification cases

e Behavior-spec-case consists of any number of following clauses:
 requires
diverges
measured_by
assignable
accessible
callable
when
ensures
duration
working_space
signals_only
signals

e There are defaults that allow any of them to be omitted.

Example: non-helper method m specification case

behavior
forall T1 x1;..Fforall Tn xXn; % Forevery possible value of the variables following holds
old Ul y1 = F1; ..old Uk yk = FKk; % Inaugmented pre-state, the pre-values are made explicit

requires P; % Preconditions and all invariants should hold in the pre-state of the call
measured_by Mbe 1T Mbp; % Mbe isvariant of recursive call if Mbp, is true in the augmented pre-state
diverges D; % D becomes true if recursive call never terminates, otherwise terminates in post-state s.t.
when W; % executes as long the W holds

accessible R; % Locations that are readable from

assignable A; % Locations which can be assigned to during method execution
callable pl1(.), .., pl(.); % Methods and constructors called during method execution
captures Z; % param.-s of reference type assigned to fields of some object or to array elements
ensures Q; % guarantee if method terminates normally

signals only E1,...,Eo; % throwing an exception of type Ea it must be one of E1,...,Eo

signals (E e) S; % exceptional cond R must hold in post-state, augmented by a binding from variable e
working _space Wse 1Tt Wsp; % restriction placed on the maximum space the method call may have

duration De 1f Dp; % if Dp=true in the pre-state, then the method execution takes De timeunits

Method Specification Clauses (1): variable
declarations

e Specification Variable Declarations clause

spec-var-decls ::= forall-var-decls [old-var-decls] | old-var-decls
forall-var-decls ::= forall-var-declarator [forall-var-declarator] .
forall-var-declarator ::= forall [bound-var-modiers]

type-spec quantied-var-declarator ;
old-var-decls ::= old-var-declarator [old-var-declarator] . .
old-var-declarator ::= old [bound-var-modiers]

type-spec spec-variable-declarators ;
« old-var-declarator allows abbreviation within a specification case.

* The names defined in the spec-variable-declarators can be used throughout the spec case for the
values of their initializers.

* The expressions are evaluated in the method's pre-state

Method Specification Clauses (2): requlres

 Arequires clause specifies a precondition of method or constructor
requires-clause ::= requires-keyword pred-or-not ;
| requires-keyword \same ;
requires-keyword ::= requires | pre
| requires redundantly | pre_redundantly
pred-or-not ::= predicate | \not specified
* The predicate in a requires can refer to any visible fields and to the parameters of the method
* Any number of requires clauses can be included a single specification case.

e Multiple requires clauses in a specification case means the same as a single requires clause whose
precondition predicate is the conjunction of these precondition predicates in the given requires clauses.

e \same stands for the disjunction (with | |) of the preconditions in all spec cases from the current class
together with the inherited spec cases defined in its supertypes.

Method Specification Clauses (3): ensures
clauses

e Specifies a property that is guaranteed to hold at the end of the method (or constructor) invocation in
the case that this method (or constructor) invocation returns without throwing an exception.

ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post| ensures redundantly | post redundantly

A predicate in an ensures clause can refer to

any visible fields,

the parameters of the method,

\result if the method is non-void, and

* may contain expressions of the form \old(E) .

Multiple ensures clauses in a specification case mean the same as a single ensures clause whose
postcondition predicate is the conjunction of the postcondition predicates in the given ensures clauses.

The default precondition for a lightweight specification case, is \not_specified.

The default precondition for a heavyweight specification case is true

Summary

 We have given a notation for specifying
e partial correctness of programs

e total correctness of programs

* |t is easy to write incorrect specifications

e and we can prove the correctness of the incorrect programs

e |tis recommended to use testing, simulation and formal
verification hand in hand.

ITI8610, Module Ill, Lecture 4: Program specifications

	Specifying Contracts for Methods
	Assume-quarantee specifications as program annotations��Recall some definitions
	Introduction to Hoare style specifications
	Programs as state transition systems
	Some notations
	Imperative programs - state
	Imperative programs - execution
	Simple while-language
	Terminology and notations
	Formal specification
	Hoare’s notation
	Partial Correctness
	Examples
	Examples
	Total correctness
	Example
	Total correctness
	Total correctness
	Examples
	Examples
	A more complicated example
	Annotate First
	Annotation example
	WHILE annotation
	Some exercises
	From imperative to OOP specifications
	Method specification
	Access Control in specification Cases
	Lightweight specification cases
	Lightweight Specification Cases: Syntax
	Example: Lightweight vs Heavyweight Spec. Cases
	Example explanation:
	Heavyweight specification Cases
	Semantics of flat behavior specification cases
	Example: non-helper method m specification case
	Method Specification Clauses (1): variable declarations
	Method Specification Clauses (2): requires
	Method Specification Clauses (3): ensures clauses
	Summary

