
Specifying Contracts for
Methods
Module III Lecture 4

ITI8610, Module III, Lecture 4: Program specifications

Assume-quarantee specifications as program
annotations

Recall some definitions

ITI8610, Module III, Lecture 4: Program specifications

Introduction to Hoare style specifications

• Verification of programs is based on formal specifications and on related verification method.
We will use Floyd-Hoare logic (FHL)

• Proof systems of the FHL style depend on particular programming language with its syntax and
semantics

• In this lecture
- we study the specification of deterministic sequential while-programs
- and extend this to JML specifications of OO programs, namely, to method contracts.

ITI8610, Module III, Lecture 4: Program specifications

Programs as state transition systems

• Programs are structured specifications of state transition systems.

• Programming language defines constructs for specifying single transitions and
transition compositions.

• State components specified using datatypes are referred in conditions of
command constructs like if-, while-, for-, case-command etc.

ITI8610, Module III, Lecture 4: Program specifications

Some notations

ITI8610, Module III, Lecture 4: Program specifications

• Imperative programs are built out of commands like assignment, if-,
while-, for-, case, etc

• Formally, the terms 'program' and 'command' are synonymous.

• 'Program' will only be used for commands representing complete
algorithm.

• The ‘assertion’ is used for conditions on program variables that occur in
correctness specifications.

Imperative programs - state

ITI8610, Module III, Lecture 4: Program specifications

• Executing an imperative program has the effect of
changing the state i.e. the values of program variables,

but

they may have states consisting of other things than
the values of variables (e.g. I/O ports).

Imperative programs - execution

ITI8610, Module III, Lecture 4: Program specifications

• To use an imperative program (or method)

• first establish a state,
i.e. set some variables to have values of interest

• then execute the program,
(to transform the initial state into a final one)

• inspect the values of variables in the final state to get the result.

Simple while-language

% Expressions
• E ::= N|V|E1+E2|E1-E2|E1×E2| … % Arithmetic

• B ::= T|F|E1=E2|E1≤E2| … % Logic

• C ::= %Commands:
SKIP % empty command (place holder)

| V := E % assignment

| V(E1) := E2 % array assignment

| C1 ; C2 % sequential execution

| IF B THEN C1 ELSE C2 % conditional execution

| BEGIN VAR V1;…;VAR Vn; C END % block command (var. scoping)

| WHILE B DO C % while - loop

| FOR V := E1 UNTIL E2 DO C % for - loop

ITI8610, Module III, Lecture 4: Program specifications

Terminology and notations
• Variable

• V1, V2, ..., Vn

• Program state - valuation of program (and control) variables
• Command - gives a rule how the program state changes

• C1, C2, ... , Cn

• Program - command that includes all the commands in the algorithm
• C

• Expression
• Arithmetic expression gives a value: E1, E2, ... , En
• Boolean expression gives a truth-value: B1, B2, ... , Bn

• Assertion – logical expression on program variables in the pre- and
postconditions of the specification, also in invariants

• S1, S2, ... , Sn

ITI8610, Module III, Lecture 4: Program specifications

Formal specification
• Describes the intended behaviour of the program
• Specifies what the program must do

• Has well-defined synax and semantics that helps avoiding ambiguous and
controversial specifications

• Can be used to prove the correctness of the program
• Can be used to generate tests and counterexamples

We will use formalism that is based on FHL and predicate calculus

ITI8610, Module III, Lecture 4: Program specifications

Hoare’s notation

ITI8610, Module III, Lecture 4: Program specifications

Sir Tony Hoare

Partial Correctness

ITI8610, Module III, Lecture 4: Program specifications

Examples

ITI8610, Module III, Lecture 4: Program specifications

Examples

ITI8610, Module III, Lecture 4: Program specifications

Total correctness

ITI8610, Module III, Lecture 4: Program specifications

Example

ITI8610, Module III, Lecture 4: Program specifications

Total correctness

ITI8610, Module III, Lecture 4: Program specifications

Total correctness

o

ITI8610, Module III, Lecture 4: Program specifications

Examples

ITI8610, Module III, Lecture 4: Program specifications

Examples

ITI8610, Module III, Lecture 4: Program specifications

A more complicated example

ITI8610, Module III, Lecture 4: Program specifications

Annotate First

23

in program!

Annotation example

24

WHILE annotation

Some exercises

ITI8610, Module III, Lecture 4: Program specifications

From imperative to OOP specifications

• Imperative part in OOP concerns methods
• Method specifications in JML:

method-specification ::= specification | extending-specification
extending-specification ::= also specification
specification ::= spec-case-seq [redundant-spec]| redundant-spec
spec-case-seq ::= spec-case [also spec-case] . . .

• Method-specification can include any number of spec-cases, joined by the keyword also, as well as
a redundant-spec

• Each of the spec-cases specifies a behavior that must be satisfied by a correct implementation of the
method

• Whenever a call to the specified method or constructor satisfies the precondition of one of its spec-
cases, the rest of the clauses in that spec-case must also be satisfied by the implementation

ITI8610, Module III, Lecture 4: Program specifications

Method specification

• The spec-cases in a method-specification can have several forms:
spec-case ::= lightweight-spec-case | heavyweight-spec-case| model-

program

• heavyweight specification cases, which start with one of the keywords:
behavior, normal_behavior or exceptional_behavior

• lightweight specification cases do not contain these behavior keywords

ITI8610, Module III, Lecture 4: Program specifications

Access Control in specification Cases

• Heavyweight specification cases may be declared with an explicit access modifier:
privacy ::= public | protected | private

• The access modifier of the case cannot allow more access than the method being
specified.

• Example:
• a public method may have a private behavior specification,
• but a private method may not have a public specification.

• A heavyweight specification case without an explicit access modifier is considered
to have default package access.

ITI8610, Module III, Lecture 4: Program specifications

Lightweight specification cases

• Do not specify an access modifier,
• their access modifier is implicitly the same as that of method being specified.
• For example,

• a lightweight specification of a public method has public access, implicitly,
• a lightweight specification of a private method has private access, implicitly.

• This is a different default than that for heavyweight specifications, where an
omitted access modifier always means package access.

• A lightweight specification case can be understood as syntactic sugar for a behavior
specification case

ITI8610, Module III, Lecture 4: Program specifications

Lightweight Specification Cases: Syntax

lightweight-spec-case ::= generic-spec-case

generic-spec-case ::= [spec-var-decls] spec-header [generic-spec-body] |
[spec-var-decls] generic-spec-body

generic-spec-body ::= simple-spec-body |{|generic-spec-case-seq |}

generic-spec-case-seq ::= generic-spec-case [also generic-spec-case] . . .

spec-header ::= requires-clause [requires-clause] . . .
simple-spec-body ::= simple-spec-body-clause [simple-spec-body-clause] . . .
simple-spec-body-clause ::= diverges-clause | assignable-clause |

accessible-clause| captures-clause | callable-clause | when-clause |
working-space-clause| duration-clause | ensures-clause | signals-only-
clause | signals-clause | measured-clause

ITI8610, Module III, Lecture 4: Program specifications

Example: Lightweight vs Heavyweight Spec. Cases

package org.jmlspecs.samples.jmlrefman;
public abstract class Lightweight {
protected boolean P, Q, R;
protected int X;

/*@ requires P;

@ assignable X;

@ ensures Q;

@ signals (Exception) R;
@*/
protected abstract int m() throws Exception;
}

package org.jmlspecs.samples.jmlrefman;
public abstract class Heavyweight {
protected boolean P, Q, R;
protected int X;
/*@ protected behavior
@ requires P;
@ diverges false;
@ assignable X;
@ when \not_specified;
@ working_space \not_specified;
@ duration \not_specified;
@ ensures Q;
@ signals_only Exception;
@ signals (Exception) R;
@*/
protected abstract int m() throws Exception;
}

Lightweight Corresponding Heavyweight (with explicit defaults)

ITI8610, Module III, Lecture 4: Program specifications

Example explanation:

• the default for an omitted clause in a lightweight specification is \not_specified for all
clauses, except diverges, which has a default of false, and signals.

• The default for an omitted signals clause is to only permit the exceptions declared in the
method's header to be thrown

ITI8610, Module III, Lecture 4: Program specifications

Heavyweight specification Cases

• There are three kinds of heavyweight specification cases, called behavior, normal behavior, and
exceptional behavior specification cases, beginning (after an optional privacy modifier) with the
one of the keywords behavior, normal_behavior, or exceptional_behavior,
respectively.

heavyweight-spec-case ::= behavior-spec-case

| exceptional-behavior-spec-case

| normal-behavior-spec-case

• Like lightweight specification cases, normal behavior and exceptional behavior specification cases
can be understood as syntactic sugar for special kinds of behavior specification cases

ITI8610, Module III, Lecture 4: Program specifications

Semantics of flat behavior specification cases

• Behavior-spec-case consists of any number of following clauses:
• requires
• diverges
• measured_by
• assignable
• accessible
• callable
• when
• ensures
• duration
• working_space
• signals_only
• signals

• There are defaults that allow any of them to be omitted.

ITI8610, Module III, Lecture 4: Program specifications

Example: non-helper method m specification case
behavior

forall T1 x1; ... forall Tn xn; % For every possible value of the variables following holds
old U1 y1 = F1; ... old Uk yk = Fk; % In augmented pre-state, the pre-values are made explicit
requires P; % Preconditions and all invariants should hold in the pre-state of the call
measured_by Mbe if Mbp; % Mbe is variant of recursive call if Mbp, is true in the augmented pre-state
diverges D; % D becomes true if recursive call never terminates, otherwise terminates in post-state s.t.
when W; % executes as long the W holds
accessible R; % Locations that are readable from
assignable A; % Locations which can be assigned to during method execution
callable p1(...), ..., pl(...); % Methods and constructors called during method execution
captures Z; % param.-s of reference type assigned to fields of some object or to array elements
ensures Q; % guarantee if method terminates normally
signals_only E1,...,Eo; % throwing an exception of type Ea it must be one of E1,…,Eo
signals (E e) S; % exceptional cond R must hold in post-state, augmented by a binding from variable e
working_space Wse if Wsp; % restriction placed on the maximum space the method call may have
duration De if Dp; % if Dp=true in the pre-state, then the method execution takes De timeunits

ITI8610, Module III, Lecture 4: Program specifications

Method Specification Clauses (1): variable
declarations
• Specification Variable Declarations clause
spec-var-decls ::= forall-var-decls [old-var-decls] | old-var-decls
forall-var-decls ::= forall-var-declarator [forall-var-declarator] . . .

forall-var-declarator ::= forall [bound-var-modiers]

type-spec quantied-var-declarator ;

old-var-decls ::= old-var-declarator [old-var-declarator] . . .

old-var-declarator ::= old [bound-var-modiers]

type-spec spec-variable-declarators ;

• old-var-declarator allows abbreviation within a specification case.
• The names defined in the spec-variable-declarators can be used throughout the spec case for the

values of their initializers.
• The expressions are evaluated in the method's pre-state

ITI8610, Module III, Lecture 4: Program specifications

Method Specification Clauses (2): requires

• A requires clause specifies a precondition of method or constructor
requires-clause ::= requires-keyword pred-or-not ;

| requires-keyword \same ;

requires-keyword ::= requires | pre

| requires_redundantly | pre_redundantly

pred-or-not ::= predicate | \not_specified

• The predicate in a requires can refer to any visible fields and to the parameters of the method
• Any number of requires clauses can be included a single specification case.
• Multiple requires clauses in a specification case means the same as a single requires clause whose

precondition predicate is the conjunction of these precondition predicates in the given requires clauses.
• \same stands for the disjunction (with ||) of the preconditions in all spec cases from the current class

together with the inherited spec cases defined in its supertypes.

ITI8610, Module III, Lecture 4: Program specifications

Method Specification Clauses (3): ensures
clauses
• Specifies a property that is guaranteed to hold at the end of the method (or constructor) invocation in

the case that this method (or constructor) invocation returns without throwing an exception.
ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post| ensures_redundantly | post_redundantly

• A predicate in an ensures clause can refer to
• any visible fields,
• the parameters of the method,
• \result if the method is non-void, and
• may contain expressions of the form \old(E).

• Multiple ensures clauses in a specification case mean the same as a single ensures clause whose
postcondition predicate is the conjunction of the postcondition predicates in the given ensures clauses.

• The default precondition for a lightweight specification case, is \not_specified.
• The default precondition for a heavyweight specification case is true

ITI8610, Module III, Lecture 4: Program specifications

Summary
• We have given a notation for specifying

• partial correctness of programs

• total correctness of programs

• It is easy to write incorrect specifications
• and we can prove the correctness of the incorrect programs

• It is recommended to use testing, simulation and formal
verification hand in hand.

ITI8610, Module III, Lecture 4: Program specifications

	Specifying Contracts for Methods
	Assume-quarantee specifications as program annotations��Recall some definitions
	Introduction to Hoare style specifications
	Programs as state transition systems
	Some notations
	Imperative programs - state
	Imperative programs - execution
	Simple while-language
	Terminology and notations
	Formal specification
	Hoare’s notation
	Partial Correctness
	Examples
	Examples
	Total correctness
	Example
	Total correctness
	Total correctness
	Examples
	Examples
	A more complicated example
	Annotate First
	Annotation example
	WHILE annotation
	Some exercises
	From imperative to OOP specifications
	Method specification
	Access Control in specification Cases
	Lightweight specification cases
	Lightweight Specification Cases: Syntax
	Example: Lightweight vs Heavyweight Spec. Cases
	Example explanation:
	Heavyweight specification Cases
	Semantics of flat behavior specification cases
	Example: non-helper method m specification case
	Method Specification Clauses (1): variable declarations
	Method Specification Clauses (2): requires
	Method Specification Clauses (3): ensures clauses
	Summary

