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Motivation

> linear regression is frequently referred as the "work horse” of
statistics and machine learning. [Machine Learning, K.P.
Murphy]

> The goal is to predict continuous values.

» Based on the training data set find parameters of the model
(coefficients of the function).

> Use the model (function) to predict (compute) the value of
dependent variable for the given value(s) of independent
variable(s).



Practical Approach (Very simple case)

Let X represent the size of the apartment in square meeters and y
- price of the apartment in thousands of EUR. The goal is to train
a model y = ax + b able to predict the price of the apartment on

the basis of its size.
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About the model

» The model coefficients were computed on the basis of a
random sample.

» Could it be that for another sample it would be impossible to
identify the parameters? Or another sample would result in
completely different model?

» If my model is trustworthy how good/precise is it?
» Could the model be improved?

» Just a prediction or some other goals?



Goodness of the model

Determination coefficient.
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Significance of the model.

Standard error.
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Significance of each variable.
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Normal probability plot
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Residual plots



Model building

Let X = {x1,x2,...,Xn} is the set of independent variables
available for the modelled process. The goal is to select the subset
Xs which is optimal for predicting variable y.
> Using all the available variables may lead:
» Overparametrization
» Unnecessary computational complexity.
» Using too few variables may lead:
» Loss of precision.
» Inadequate behaviour.
One needs to determine if adding/removing variable effected the
model quality.



One more very simple example

Let X be the matrix where the first column contains the .
information about distances delivery agent has covered to deliver

all the parcels and the second column contains the information
about the number of parcels. Dependent variable y is the time to
complete the assignment.
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z - time

y - number of parcels



Example

Let us construct the model with just one variable describing

distance:
§ = 0.067826087x + 1.273913043
R> = 0,664071312
S = 1,001791873
F = 15,81457814
SSR = 8,028695652

Let us now construct the model with two variables:

9 = 0.061134599x 4 0.923425367x, — 0.868701467
R2; = 0,876300111

S = 0,573142152

F = 32,87836743
SSR = 2,299443486

Could one conclude that the second model is better?



Example

The null hypothesis is that there is no change in quality and the
alternative hypothesis is the opposite:

Ho: SSR, —SSR, = 0
Hy:SSR, — SSR, # 0

For the level of significance o = 0.05 Rejection rule is Reject Hy if
F > 5.5914. For this particular case F = 17,59536505. This
rejects the hypothesis Hy. SSR; — SSR»> # 0 which in turn means
that adding variable x, - parcels number has improved the model
quality.
» More examples of practical implementation will be given
during the practice session.
» What kind of method(s) was/were used to find the
coefficients of the model?



least squares method

» The goal is to find the values for the coefficients a; and
intercept b that would minimize sum of squared residuals:

SSR=Y 7= (vi—9)

» Why does it work? Are there any other methods?




Formal approach
» The goal is to find the parameters of the linear function that
best fits the data

D
y()=wixte=) wx+e
j=1

> It is often assumed that € has a gaussian distribution
e ~ N(p, o?).
» One may rewrite the model in the following form
ply [ x,0) =N + (v | u(x),0%(x)).
p=(w'x and 0%(x) = 02 in this case § = ((w), 0?)

» Example: the case of one dimensional input is

w(x) = wo +wix =w'x.



Maximal likelihood

» Squared cost function leads convex objective function, which
have only one optimum, which is global.

» Compute MLE and find parameters which maximize log
likelihood function or minimize negative log likelihood
function.

((6) =log(p | 8) = Zlogp (vi | xi,6)
» The log likelihood of the defined model is
N 1 \} 1 Fo\2
0) = ; log [(W) exp(—rtz(y,- -0 x,-) )]
-1
202

SSR(8) — g log(2702)

N
where SSR = Z:(y,-BTx,-)2
i=1



Gradient descend

v

Iterative technique, parameters are updated on each iteration.

v

Initialize parameters randomly.

v

Each parameter is updated in the direction of its negative
gradient.

v

For each O; repeat in parallel until converge

(k+1) _ (k) 0J(6)
HJ- —9J- a 86j

> « is a learning rate.
» this is first order algorithm.



Gradient descent for the least squares

» Find the derivative of the objective function

aJee) o1, o . O ,
= a0 = g =

» For the entire data set

0J(0) .
89j ZZ(}/i*Yi)Xi,j

» Update rule:

0 =0F —a> (9 — yi)xij-
i—1



Non-linear functions and linear regression

v

Replace x with some nonlinear functions ¢(x)

y=67(x)

v

This operation is called basis function expansion.

v

Example: polynomial regression

o(x) = [1,X,X2, .. ,Xd]

v

While the function is non-linear, it is still linear in its
parameters.



Polynomial regression

» On the one hand polynomial function allows to fit the data
with a very high precision, which is achieved by large positive
and negative values of the coefficients.

» On the other hand small changes in the data will lead greater
changes in the coefficients.

» Makes it problematic to model noisy data.



Encouraging small er values of the parameters

» Use a zero-mean Gaussian prior:

P6) = T[N, [ 0,7)
J
» Corresponding log likelihood function:

(6) => logN(y; | 87 xi,0°) Y "log N'(6; | 0,7°)

i=1 j=1



Ridge regression

» Regularized objective function:

1 & A
J(0) = 5 Z(YI - 9Tx,-)2§ 1613
i=1

where \ = 02 /72
> The regularized linear regression is called ridge regression

» Ridge regression normal equation normal equation is given by
Brigge = (M — XTX)IXTY

» Adding Gaussian prior to parameters is called /5
regulaarization



