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Recommender systems?

* Several historical ,expert systems”
were recommender systems
(medicine etc)

* Google is a popularity-focused
recommender

* Social network systems are
recommender systems: recommend
news items and possible friends and
topics

* The wealth of data available online



Two main recommender
types

* Collaborative filtering
* Rule-based, also called content-based



Our tourism recommender
project

* http://www.sightsplanner.com
* http://www.sightsmap.com
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Input 1

e User Interests:

Kes(jo
Kes(jo
Kes(jo

Kes(jo

nn,nightlife,0.6)
nn,sports,0.8)
nn,music,0.7)

nn,heavymetal,0.9)

dislikes(john,classicalmusic,0.9)



Input 2
« Object properties:

type(omalley,bar,0.9)
activity(omalley,footballwatching,0.7)
popularity(omalley,1000)

type(crown,restaurant,1.0)
activity(crown,heavymetal,0.8)
popularity(crown,1500)
opentime(crown,12.00,0.9)



Input 3

« Knowledge about the world:

type(X,church,M) -> type(X,architecture,M*0.9)
type(X,bar,M) -> type(X,drinkingplace,M)
type(X,restaurant,M) -> type(X,drinkingplace,M*0.7)
activity(X,footballwatching,M) -> activity(X,sports,M)

type(X,fastfood,M) -> visitminutes(X,20,0.8*M)
type(X,bar,M) & M>0.75 -> openatl2(X,0.85)

description(X,S) &
contains_str(S ,“paintings”) &
contains_str(S ,“gallery”) ->
type(X,artcollection,0.8)



Output

e« Recommendations: numerical ranks
for all tourism objects:

rank(john,omalley,0.6)

rank(john,crown,0.5)



Reasoning tasks

Object identities: are two objects A and B
obtained from different sources actually
equal?

Object types from content: using title,
abstract, source etc, calculate wheather the
object is a city, a castle, a church, medieval,
modern, a drama play, a classical music
concert, a rock concert, ...

Generalised object types: if we know that an
object is a bar (with some confidence X),
then it is also a nightlife spot (with some
confidence Y)

Additional properties like time of visit,



Probabilities?

There is a large number of probability-
oriented theories and several reasoning
systems, yet no “mainstream” probabilistic
rule-based derivation algorithms exist

Fuzzy logic, probabilistic logic, Bayes
networks, ....

Probabilistic datalog, probabilistic
prolog, ...

Mycin, Emycin, Cadiag-2, ...



Goal

Formulate a practical, correct and complete
way to use probabilities in rules for the
(tourism) recommender context, using

object logic.

Metalogic:
0.9: type(X,church) -> type(X,architecture)
0.8: type(X,fastfood) -> visitminutes(X,20)

Object logic:
type(X,church,M) ->
type(X,architecture,M*0.9)

vsinAlYNY FfAa~EFAAA MDY -~



Which kinds of probabilities?

Non-strict sets a la ,,blue”, ,large”, ...
Fuzzy logic : p(A v B) = max(p(A),p(B))

0.95: type(X,church) ->
type(X,architecture)

0.7: type(X,theatre) ->
type(X,architecture)

ncomplete knowledge a la ,,not sure
that” ...
Probabilistic: p(A v B) = p(A)+p(B) -

{f 4 A \L _ /7S \\




Object logic layers of
Interpretation

Pred(t): Pred(t) holds.
Pred(t,m): Pred(t) holds with a fuzzy
measure at least m.
Pred(t,m,c): With confidence (probability) at
least ¢,
Pred(t) holds with at least a
fuzzy measure m.
Pred(t,m,c,d): The fact "with confidence
(probability) at
least ¢, Pred(t) holds with at
least a fuzzy
measure m,, holds and depends



Examples

bar(malloy,0.9,1): we are certain that malloy is
bar
with a fuzzy measure at least 0.9

bar(crown,0.9,0.8): we are 0.8 confident that
crown iIs
a bar with a fuzzy measure at least 0.9



Rule examples

pbar(X,M,C) & M>L ->
openatl2(X,1,C*0.8):

when we have confidence C in that X is a bar
with a

measure M at least L, we are C*0.8 confident
that it is open at 12 with a measure 1.

optionally
bar(X,M,C) -> openatl2(X,1,M*C*0.8):

example of a sure rule:



Fuzzy part is easy

Use your own preferred function f and limits for
fuzzy derivation

Pred(X,M1) & Pred(X,M2) -> Pred(X, f(M1,M2))
Pred(X,M) & M>L -> Pred(X, f(M))

Standard derivation rules in resolution hold, nothing
IS added.

We can enhace subsumption, provided f is
monotonic:

Pred(X,M1) subsumes Pred(Y,M2) iff Y=Xs and



Probabilistic part requires

tracking

Recall P(t,M,C,D): C is the probability and D is the
set of facts on which the atom depends upon.

Always use rules of form

P(.....D1) & ... & P(...,.Dn) & A1l & .... & An ->
P(....,union(D1,...,Dn))

where P atoms do contain probabilities and
Al ... An do not contain probabilities



Multiplying probabilities

Generally the rules should have a form

P1(t1,M1,C1,D1) & ... & Pn(tn,Mn,Cn,Dn) ->
P(t,M,f(M1,...,M2),9(C1,...,.Cn,D1,...,Dn),union(D1,...,
Dn))

* In simple cases g(C1,...,Cn,D1,...,Dn) = C1*...*Cn

* However, if intersection(D1,....,Dn) is not empty,
Ci-s corresponding to Di-s with multiple
occurrences should be used only once



Cumulating evidence

Use evidence cumulating rule schema:

Pred(X,M1,C1,D1) & Pred(X,M2,C2,D2) &
Empty(Intersection(D1,D2))

->

Pred(X,min(M1,M2),(C1+C2)-
(C1*C2),union(D1,D2))



Cumulating evidence

Example: independent facts

a) bar(X,M,C,D) & M>0.75 -> openatl2(X,1,C*0.8,D)

b) intitle(X,"allnight",M,C,D) & M>0.75 ->
openatl2(X,1,C*0.9,D)

c) bar(malloy,1,1,{c}).

d) intitle(malloy,"allnight",1,1,{d}).

a,c: e) openatl2(malloy,1,0.8,{c})
b,d: f) openatl2(malloy,1,0.9,{d})

giving for our case (0.84+0.9=1.7, 0.8*0.9=0.72,
1.7-0.72=0.98)
openatl2(malloy,1,0.98,{c,d})



Cumulating evidence

Example: dependent facts

f) activity(X,heavymetal,1,1,D) ->
activity(X,music,1,1,D).

g) activity(X,Y,M1,C1,D1) & likes(U,Y,M2,C2,D2) ->

fits(U,X,1,M1*M2*C1*C2,union(D1,D2))
a) likes(john,music,1,0.6,{a})

b) likes(john,heavymetal,1,0.8,{b})
c) activity(crown,heavymetal,1l,1,{c}).

c,f: h) activity(crown,music,1,1,{e}).
g,a,h(cf): 1) fits(john,crown,1,0.6,{a,c})
g,b,c:j) fits(john,crown,1,0.8,{b,c})



Ranking calculation in meta-
logic

* Derive all open-at-time facts.
* Derive all independent addrank facts, using:

Popularity(X,P) -> addrank(X,pf(P))

Likes(X,Y,M1) & assoc(Z,Y,M2,C,D) ->
addrank(X,Z,f(M1,M2,C),D)

Dislikes(X,Y,M1) & assoc(Z,Y,M2,C,D) ->
addrank(X,Z,nf(M1,M2,C),D)

* Sum all maximal pos/neg addrank numbers
for objects.
* Filter out objects which are open at time.



Summary 1

Represent facts as P(t,M,C,D) where:
M- fuzzy measure of P(t) holding
C - confidence as probability of at least
P(t,M)
holding
D - set of facts on which P(t,M,C)
depends

Represent rules as

P1(t1,M1,C1,D1) & ... & Pn(tn,Mn,Cn,Dn) &
M1>L1 & ... & Mn>Ln & Al .... & Am

->
P(t,M,f(M1,...,M2),9(C1,...,Cn,D1,...,Dn),union(



Summary 2

Add evidence cumulating rule

Pred(X,M1,C1,D1) & Pred(X,M2,C2,D2) &
Empty(Intersection(D1,D2))

->

Pred(X,min(M1,M2),(C1+C2)-
(C1*C2),union(D1,D2))

Add extended subsumption

Pred(X,M1,C1,D1) subsumes
Pred(Y,M2,C2,D2 )

iff Y=Xs & M1>=M2 & C1>=C2 &
D1 is a subset of D2






