
Course ITI8531: Software Synthesis
and Verification

Lecture 12: Acacia+ LTL Synthesis - I

Spring 2019

Leonidas Tsiopoulos

leonidas.tsiopoulos@taltech.ee

Avoiding the Classical Approach to LTL Synthesis

• LTL synthesis is a challenging problem due to 2EXPTIME theoretical
complexity and lack of scalable algorithms for determinization of automata
and solving games.

• There are some LTL-based synthesis approaches offering „Safraless“
solutions to avoid the very complex determinisation step and also better
algorithms working on „symbolic“ representation of the state space during
the game.
• Even translating LTL formulae to symbolic automaton in the first place.

• More for this and other „Safraless“ approaches in the 4th lecture.

• Acacia+ and the techniques around it is one such „Safraless“ approach.

23.04.2019 2

Classical solution by Pnueli and Rosner

23.04.2019 3

The problem has been shown to be 2ExpTime-Complete by the same authors.

Acacia+: A tool for LTL synthesis

• Main contributions:
• Efficient symbolic incremental algorithms based on antichains for game

solving.
• Synthesis of small winning strategies, when they exist.
• Compositional approach for large conjunctions of LTL formulas.
• Performance is better or similar to other existing tools but its main advantage

is the generation of compact strategies.

• Application scenarios:
• Synthesis of control code from high-level LTL specifications.
• Debugging of unrealizable specifications by inspecting compact counter

strategies.
• Generation of small deterministic automata from LTL formulas, when they

exist.

23.04.2019 4

Acacia+ Safraless approach

23.04.2019 5

• Safety games are the simplest games to solve!
• Details and comparison to other games of other LTL-based synthesis

approaches in Lectures III and IV

Acacia+ Safraless approach

23.04.2019 6

• Safety games are the simplest games to solve!
• Details and comparison to other games of other LTL-based

synthesis approaches in Lectures III and IV

Acacia+ and LTL Transformation to Automata (1)

• An infinite word automaton is a tuple A = (Σ,Q, q0, α, δ) where:
• Σ is the finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• α ⊆ Q is a set of final states and

• δ ⊆ Q × Σ × Q is the transition relation.
• For all q ∈ Q and all σ ∈ Σ, δ(q, σ) = {q´| (q, σ, q´) ∈ δ}.

• A is deterministic if ∀q ∈ Q・∀σ ∈ Σ・|δ(q, σ)| ≤ 1.

• A is complete if ∀q ∈ Q・∀σ ∈ Σ・δ(q, σ) = ∅.

23.04.2019 7

Acacia+ and LTL Transformation to Automata (2)

• A run of A on a word w = σ0σ1・・・∈ Σω is an infinite sequence of states ρ = ρ0ρ1

・・・∈ Qω such that ρ0 = q0 and ∀i ≥ 0・qi+1 ∈ δ(qi, ρi).

• The set of runs of A on w is denoted by RunsA(w).

• The number of times state q occurs along run ρ is denoted by Visit(ρ, q).

• Three acceptance conditions (a.c.) are considered for infinite word automata. A
word w is accepted by A if:

• Non-deterministic Büchi : ∃ρ ∈ RunsA(w)・∃q ∈ α・Visit(ρ, q) = ∞
• Runs visits final states infinitely often.

• Universal Co-Büchi : ∀ρ ∈ RunsA(w)・∀q ∈ α・Visit(ρ, q) < ∞
• Runs visit final states finitely often.

• Universal K-Co-Büchi : ∀ρ ∈ RunsA(w)・∀q ∈ α・Visit(ρ, q) ≤ K
• Runs visit at most K final states.

23.04.2019 8

Acacia+ and LTL Transformation to Automata (3)

• The set of words accepted by A with the non-deterministic Büchi a.c. is
denoted by Lb(A).
• This implies that A is a non-deterministic Büchi word automaton (NBW).

• Similarly, the set of words accepted by A with the universal co-Büchi and
universal K-co-Büchi a.c., are denoted respectively by Luc(A) and Luc,K(A).
• With those interpretations, A is a universal co-Büchi automaton (UCW) and

that (A,K) is a universal K-co-Büchi automaton (UKCW) respectively.

• By duality, Lb(A) = 𝐿uc(𝐴) for any infinite word automaton A.

• Also, for any 0 ≤ K1 ≤ K2, Luc,K1(A) ⊆ Luc,K2(A) ⊆ Luc(A).

23.04.2019 9

Example of a NBW

23.04.2019 10

• On input aabbaabb . . . the NBW shown has only the
run: ABCDABCDABCD

• The language recognized by the NBW is:
{aabbaabbaabb . . .}

• Is this NBW complete?
• No.
• Completing this NBW we obtain:

On any infinite input word the accepting runs of both NBWs
correspond, because any run that reaches f stays in f, and since f is
not an accepting state, such a run is not accepting.

Infinite automata and LTL

• NBWs subsume LTL, i.e., for an LTL formula φ, there is a NBW Aφ (possibly
exponentially larger) such that Lb(Aφ) = {w|w ⊨ φ}.

• By duality, one can associate an equivalent UCW with any LTL formula φ:

• Take A¬φ with the universal co-Büchi a.c., so

• Luc(A¬φ) = 𝐿b(A¬φ) = Lb(Aφ) = {w|w ⊨ φ}.

23.04.2019 11

Turn-based Automata for Realizability of Games (1)

• To reflect the game point of view of the realizability problem the notion of turn-
based automata is used to define the specification.

• A turn-based automaton A over the input alphabet ΣI and the output alphabet ΣO

is a tuple A = (ΣI, ΣO, QI, QO, q0, α, δI, δO) where:

• QI,QO are finite sets of input and output states respectively,

• q0 ∈ QO the initial state,

• α ⊆ QI ∪ QO is the set of final states,

• δI ⊆ QI × ΣI × QO and δO⊆ QO × ΣO × QI are the input and output transition
relations.

• A is complete if for all qI∈ QI, and all σI ∈ ΣI, δI(qI, σI) ≠ ∅, and for all qO ∈ ΣO and
all σO ∈ ΣO, δO(qO, σO) ≠ ∅.

23.04.2019 12

Turn-based Automata for Realizability of Games (2)

• Turn-based automata A run on words from Σω.

• A run on a word w = (o0∪ i0)(o1∪ i1)・・・∈ Σω is an infinite sequence of states ρ
= ρ0ρ1・・・∈ (QOQI)

ω such that ρ0 = q0 and for all j ≥ 0,

(ρ2j, oj, ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI.

• All acceptance conditions we show carry over to turn-based automata.

• Every UCW (resp. NBW) with state set Q and transition set Δ is equivalent to a
turn-based UCW (tbUCW) (resp. tbNBW) with |Q| + |Δ| states:
• the new set of states is Q ∪ Δ,
• final states remain the same,

• and each transition r = q
𝜎
𝑖
∪ 𝜎

𝑜
q´ ∈ Δ where σo ∈ ΣO and σi ∈ ΣI is split into a

transition q
𝜎
𝑜

r and a transition r
𝜎
𝑖

q´.

23.04.2019 13

Example of tbUCW

23.04.2019 14

• tbUCW for Fq → (pUq) where I = {q} and
O = {p}

• Output states QO = {1, 4, 6, 8} are
depicted by squares and input states QI

= {2, 3, 5, 7, 9} by circles
• T stands for the sets ΣI or ΣO, depending

on the context, ¬q (resp. ¬p) stands for
the sets that do not contain q (resp. p),
i.e. the empty set.

• At state 1, if controller does not assert p
and next the environment does not
assert q, then the run is in state 4. From
this state, whatever the controller does,
if the environment asserts q, then the
controller loses, as state 6 will be visited
infinitely often.

• A strategy for the controller is to assert p all the time,
therefore the runs will loop in states 1 and 2 until the
environment asserts q. Afterwards the runs will loop in
states 8 and 9, which are non-final.

Finite state strategies

• We know that if an LTL formula is realizable, there exists a finite-state strategy
that realizes it [PR89].

• Finite-state strategies are represented as complete Moore machines in Acacia+.

23.04.2019 15

• The LTL realizability problem reduces to decide, given a tbUCW A over inputs ΣI

and outputs ΣO, whether there is a non-empty Moore machine M such that
L(M) ⊆ Luc(A).

• The tbUCW is equivalent to an LTL formula given as input and is constructed by
using tools Wring or LTL2BA.

Bounding the number of visited final states

23.04.2019 16

Lemma 1. Given a Moore machine M with m states, and a tbUCW A with n states,
if L(M) ⊆ Luc(A), then all runs on words of L(M) visit at most m×n final states.

Proof. The infinite paths of M starting from the initial state define words that are
accepted by A. Therefore in the product of M and A, there is no cycle visiting an
accepting state of A, which allows one to bound the number of visited final states
by the number of states in the product.

Corollary. L(M) ⊆ Luc(A) iff L(M) ⊆ Luc, mxn(A)

Reduction to a bounded universal K-co-Büchi
automaton

Lemma 2. Given a realizable tbUCW A over inputs ΣI and outputs ΣO with n
states, there exists a non-empty Moore machine with at most n2n+2 + 1 states
that realizes it.

Proof. In the paper. Re-using an older result by Safra.

Theorem. Let A be a tbUCW over ΣI, ΣO with n states and K = 2n(n2n+2 + 1) (from
above proof). Then A is realizable iff (A,K) is realizable.

23.04.2019 17

Determinization of UKCWs

• What is left is to reduce the tbUKCW realizability problem to a safety
game.

• It is based on the determinization of tbUKCWs into complete turn-
based deterministic 0-Co-Büchi automata, which can also be viewed
as safety games.

• The resulting deterministic automaton is always equipped with a
partial-order on states that can be used to efficiently manipulate its
state space using the antichain method.

• Details in the next lecture.

23.04.2019 18

References

• An Antichain Algorithm for LTL Realizability . http://lit2.ulb.ac.be/acaciaplus/slides/cav09.pdf

Slides of presentation of the following paper at CAV 2009 conference.

• Filiot E., Jin N., Raskin JF. (2009) An Antichain Algorithm for LTL Realizability. In: Bouajjani A.,
Maler O. (eds) Computer Aided Verification. CAV 2009. Lecture Notes in Computer Science, vol
5643. Springer, Berlin, Heidelberg.

• This is one of three main papers regarding this part of the course.

• S. Safra, On the complexity of ω-automata. In: Proc. 29th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society Press (1988).

• A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL '89) ACM, NY, USA,
179-190. DOI=http://dx.doi.org/10.1145/75277.75293, 1989

23.04.2019 19

http://lit2.ulb.ac.be/acaciaplus/slides/cav09.pdf

