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Multiclass classification

I One versus all.

I All versus one.

I Classification tree.

I Näıve Bayes

I Maximum entropy model (multiclass logistic regression)



One versus All

Supervised learning
One has to assign one of K labels to a given vector

I Train K models (binary classifiers) such that:
I Training data: for the classifier k :

I let the positive examples be all the points in class k ,
I let the negative examples be all the points not in a class k

I Predicting a class of a new element:
I Make prediction with each model.
I Add the results (−1 or 1) to the respective component of the

score vector.
f (x) = arg max

i
fi (x).



All versus all

Supervised learning
One has to assign one of K labels to a given vector

I Train K (K − 1)/2 models (binary classifiers), such that for
each i-th and j-th class pairs:

I let the positive examples be all the points in class i
I let the negative examples be all the points in class j

I Predicting a class of a new element:
I Make prediction with each model

f (x) = arg max
i

(∑
j

fi,j(x)
)
.



Classification tree

I Build binary tree of binary classifiers

I With K classes K − 1 classifiers are necessary

I At the root, half of the classes are considered positive and the
other half negative

I Knowledge of the data structure is necessary.



Bayes theorem

I Let us suppose that there k classes are given.

I The posterior probability of a class Ck for an input x is:

p(Ck | x) =
p(x | Ck)p(Ck)

p(x)

I p(x | Ck) is the likelihood, p(Ck) is the prior probability, p(x)
is the marginal data likelihood.

I p(Ck) is the probability of a class p(Ck) a priori, before
getting about any knowledge about the data.

I p(Ck | x) is the class probability a posteriori, after getting
knowledge about the data.

I Bayes theorem updates prior distribution into posterior on the
basis of empiric information.



Conditional and unconditional independence

I If X and Y are unconditionally independent then their joint
distribution is the product of the marginal distributions:

X ⊥ Y ⇔ p(X ,Y ) = p(X )p(Y )

I If the influence is mediated through a third variable Z , then X
and Y are said to be conditionally independent

X ⊥ Y | Z ⇔ p(X ,Y | Z ) = p(X | Z )p(Y | Z )

I Conditional independence does not imply unconditional
independence and vice versa:

X ⊥ Y | Z 6⇔ X ⊥ Y



Example: Spam detection

I Inputs x are the e-mail messages (text documents)

I m labeled training pairs (xi , yi ), where yi ∈ {0, 1}. 0 -
indicates ”clear” message and 1 - spam

I Task is to classify a new e-mail spam/not a spam

I According to Bayes theorem

p(y | x) =
p(x | y)p(y)

p(x)
∝ p(x | y)

I The demoniator may be computed as

p(x) =
∑
y ′

p(x | y ′)p(y ′)



Feature representation

I Amount of the training data may pose a problem in
computing likelihood p(x | y). (Low amout of training data
may prevent reliable computation of the likelihood).

I Consider the document as the set of words

I for the given vocabulary V present each document as a binary
vector.

I If word belong to the vocabulary corresponding element take
the value 1 and 0 otherwise.

I This approach will lead to the following likelihood function

p(x | y) =

|V |∏
j=1

p(xj | y)



Näıve Bayes assumption

I Likelihood is computed as:

p(x | y) =
n∏

j=1

p(xj | y)

I Näıve Bayes assumption: the features are conditionally
independent given the class label.

I the word näıve reveres to the fact that actually features are
not expected to be independent or conditionally independent.

I Model has relatively few parameters and therefore immune to
overfilling.



Näıve Bayes model

I Parameters of the model

θj |y=1 = p(x1 = 1 | y = 1)

θj |y=0 = p(x1 = 1 | y = 0)

θy = p(y = 1)

I The MLE estiamtes of the parameters are:

θj |y=1 =

∑m
i=1 I(xi ,j = 1, yi = 1)∑m

i=1 I(yi = 1)

θj |y=0 =

∑m
i=1 I(xi ,j = 1, yi = 0)∑m

i=1 I(yi = 0)

θy =

∑m
i=1 I(yi = 1)

m



Prediction with näıve Bayes model

I the goal is to find wether a new element is of class 1 or 0 (in
the example of spam filtering wether given e-mail message is
spam or not).

I According to Bayes theorem.

p(y = 1 | x ,θ) ∝ p(x | y ,θ)p(y | θ) = p(y = 1 | θ)
n∏

j=1

p(xi,j | y = 1,θ)

p(y = 0 | x ,θ) ∝ p(x | y ,θ)p(y | θ) = p(y = 0 | θ)
n∏

j=1

p(xi,j | y = 0,θ)

I Predict the class with highest posterior probability:

y∗ = arg max
y∈{0,1}

p(y | x, θ)



Drawbacks related to MLE estimates

In the context of spam example

I Let us suppose that an e-mail contains a word with the index
w which is in vocabulary but was never observed during the
training.

I This will lead

p(xw | y = 1) =

∑m
i=1 I(xi ,w = 1, yi = 1)∑m

i=1 I(yi = 1)
= 0

p(xw | y = 0) =

∑m
i=1 I(xi ,w = 1, yi = 0)∑m

i=1 I(yi = 0)
= 0

I In this case posterior probabilities of predicting class are 0.
Explain why ?



Smoothing

I If training set does not contain ”something” does not
necessarily mea that the probability of this ”something” is 0.
(”Black swan” case).

I Smoothing is used to overcome the problem. Basic idea is is
to take away some probability mass from the observed values
and to preserve it to the unobserved values.

I Add - one smoothing is one of the simplest techniques.

I

θj |y=1 =

∑m
i=1 I(xi ,j = 1, yi = 1) + 1∑m

i=1 I(yi = 1) + 2

θj |y=0 =

∑m
i=1 I(xi ,j = 1, yi = 0) + 1∑m

i=1 I(yi = 0) + 2


