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Multiclass classification

» One versus all.

All versus one.

v

Classification tree.

v

v

Naive Bayes

» Maximum entropy model (multiclass logistic regression)



One versus All

Supervised learning
One has to assign one of K labels to a given vector

» Train K models (binary classifiers) such that:
» Training data: for the classifier k:

> let the positive examples be all the points in class k,
> let the negative examples be all the points not in a class k

» Predicting a class of a new element:

» Make prediction with each model.
» Add the results (—1 or 1) to the respective component of the
score vector.
f(x) = arg maxf;(x).
1



All versus all

Supervised learning
One has to assign one of K labels to a given vector

» Train K(K — 1)/2 models (binary classifiers), such that for
each i-th and j-th class pairs:

> let the positive examples be all the points in class /
> let the negative examples be all the points in class j

» Predicting a class of a new element:
» Make prediction with each model

f(x)=arg m’_ax(z f,-’j(x)).

J



Classification tree

v

Build binary tree of binary classifiers

v

With K classes K — 1 classifiers are necessary

v

At the root, half of the classes are considered positive and the
other half negative

v

Knowledge of the data structure is necessary.



Bayes theorem

> Let us suppose that there k classes are given.

» The posterior probability of a class Cj for an input x is:

p(x | C)p(Ce)

PLED) =00

» p(x | Ck) is the likelihood, p(Cy) is the prior probability, p(x)
is the marginal data likelihood.

» p(Cx) is the probability of a class p(Cy) a priori, before
getting about any knowledge about the data.

» p(Cx | x) is the class probability a posteriori, after getting
knowledge about the data.

» Bayes theorem updates prior distribution into posterior on the
basis of empiric information.



Conditional and unconditional independence

» If X and Y are unconditionally independent then their joint
distribution is the product of the marginal distributions:

X LY e p(X,Y)=p(X)p(Y)

» If the influence is mediated through a third variable Z, then X
and Y are said to be conditionally independent

XLY[Zep(X,Y]2)=p(X|2)p(Y|2)

» Conditional independence does not imply unconditional
independence and vice versa:

XLY|Z&EXLY



Example: Spam detection

» Inputs x are the e-mail messages (text documents)

v

m labeled training pairs (x;, y;), where y; € {0,1}. 0 -
indicates " clear” message and 1 - spam

» Task is to classify a new e-mail spam/not a spam
» According to Bayes theorem
p(x | y)p(y)
ply | x)=——=—""xp(x|y
(v 120 = P2 2P o plx | )

v

The demoniator may be computed as

p(x) => p(x | y")p(y")
>



Feature representation

» Amount of the training data may pose a problem in
computing likelihood p(x | y). (Low amout of training data
may prevent reliable computation of the likelihood).

» Consider the document as the set of words

» for the given vocabulary V present each document as a binary
vector.

» If word belong to the vocabulary corresponding element take
the value 1 and 0 otherwise.

» This approach will lead to the following likelihood function

4

p(x | y) = prjly



Naive Bayes assumption

v

v

Likelihood is computed as:

n

p(x |y)=]]r(i | y)

j=1
Naive Bayes assumption: the features are conditionally

independent given the class label.

the word naive reveres to the fact that actually features are
not expected to be independent or conditionally independent.
Model has relatively few parameters and therefore immune to
overfilling.



Naive Bayes model

» Parameters of the model

Oy—1 = pli=1]y=1)
Ojy=0 = pla=1]|y=0)
by = ply=1)

» The MLE estiamtes of the parameters are:

0y = 2z l06j =1, = 1)
>t llyi =1)

010 — iz 106 = 1,yi = 0)
>t Iyi = 0)

0 _ Z/rll ]I(yi = 1)
Y m



Prediction with naive Bayes model

> the goal is to find wether a new element is of class 1 or 0 (in
the example of spam filtering wether given e-mail message is
spam or not).

» According to Bayes theorem.

ply =11x,0) < p(x | y,0)p(y | 8) = p(y =1 | 0] [p(xi; |y = 1,6)
j=1

p(y =0 x,0) o p(x | y,0)p(y | 8) = p(y =0 | )] [p(xi) | y = 0,6)
j=1

> Predict the class with highest posterior probability:

* = arg max x,0
y gyem}p(y\ ,0)



Drawbacks related to MLE estimates

In the context of spam example

> Let us suppose that an e-mail contains a word with the index
w which is in vocabulary but was never observed during the
training.

> This will lead

S I(xiw =1,y =1)

pixw |y =1) = m =0
borly=1) S0 = 1)
L1 I(xiw =1,y =0
P |y =0) = ZizLlbiw=Lyi=0 _,
>t Iy =0)

> In this case posterior probabilities of predicting class are 0.
Explain why ?



Smoothing

» If training set does not contain "something” does not
necessarily mea that the probability of this "something” is 0.
("Black swan" case).

» Smoothing is used to overcome the problem. Basic idea is is
to take away some probability mass from the observed values
and to preserve it to the unobserved values.

» Add - one smoothing is one of the simplest techniques.

0, S (i =1yi=1)+1
e Y1 = 1)+ 2
0; = E;llﬂ(XiJ:17Yi:0)+1
= Yo I(yi =0)+2




