
Machine Learning, Lecture 12: Markov chains
and hidden Markov models

S. Nõmm

1Department of Computer Science, Tallinn University of Technology

23.04.2015

Modeling sequential data

I Speech recognition

I Machine translation

I Handwriting recognition

I Biological sequences

I Processes originating from the area of business and finance

I Robotics (location of the robot)

I Health monitoring

Sequential processes

I Consider a system with N discrete states. (Some times
referred as the system which may occupy one of N states at
each time instance t).

I The processes, in which the state evolution is random over
time, are called stochastic processes.

I Any joint distribution over sequences of states can be factored
according to the chain rule into a product of conditional
distributions:

p(x0, x1, . . . , xT) = p(x0)
T∏
t=1

p(xt | x0, . . . , xt−1)

Example: language modeling

I What is the probability of a sentence: The cat sat on the mat
?

I According to the chain rule:

p(The cat sat on the mat) =

p(The)×
p(cat | The)×
p(sat | The cat)×
p(on | The cat sat)×
p(the | The cat sat on)×
p(mat | The cat sat on the)×

I Problem: infeasible amount of data necessary to learn all the
statistics reliably.

Markov process

I Let us suppose that the future is independent of the past
given the present.

p(xt−1, xt+1 | xt) = p(xt−1 | xt) · p(xt+1 | xt)

referred as Markov Assumption

I The processes where the next step depends only on the
current state:

p(xt+1 | x0, . . . , xt) = p(xt+1 | xt)

are called Markov processes

I Combining the Markov assumption with the chain rule one
gets the probability of the whole sequence as:

p(x0, x1, . . . , xT) = p(x0)
T∏
t=1

p(xt | xt−1)

Language modeling with Markov process

I What is the probability of the sentence The cat sat on the
mat?

I according to the Markov assumption and the chain rule:

p(The cat sat on the mat) =

p(The)×
p(cat | The)×
p(sat | cat)×
p(on | sat)×
p(the | on)×
p(mat | the)×

I Obviously one has to estimate much smaller number of the
parameters.

Markov Chain

I The sequence generated by a Markov process is called the
Markov chain

I Usually it is assumed that the Markov chain is time-invariant
or stationary - this means that the probabilities p(xt | xt − 1)
do not depend on time.

I For example in language modeling the probability p(the | on)
does not depend on the positions of these words in the
sentence.

I This is an example of parameter tying since the parameter is
shared by multiple variables

Markov model specification

I A stationary Markov model with N states can be described by
an N × N transition matrix:

Q =

q11 . . . q1N
.
qN1 . . . qNN


where qij = p(xt = i | xt−1 = j)

I Constraints on valid transition matrices:

qij ≥ 0,
N∑
i=1

qi ,j = 1, for all j

State transition diagram

I State transition matrices can be visualized with a state
transition diagram

I State transition diagram is a directed graph where arrows
represent legal transitions.

I Drawing state transition diagrams is most useful when N is
small and Q is sparse.

Q =

[
0.4 0.6
0.7 0.3

]

Rainy Sunny

0.6

0.7

0.30.3

Graphical models

I A way of specifying conditional independencies

I Directed graphical model: DAG

I Nodes are random variables

I A node’s distribution depends on its parents

I Joint distribution: p(X) =
∏
i

p(xi | Parentsi)

I A node’s value conditional on its parents is independent of
other ancestors

Markov chain as a graphical model

p(x0, x1, . . . , xT) = p(x0)
T∏
t=1

p(xt | xt−1)

I Graph interpretation differs from state transition diagrams:

I Nodes represent state values at particular times

I Edges represent Markov properties

x0 x1 x2 x3p(x0)
p(x1 |x0) p(x2 |x1) p(x3 |x2)

Markov chain training

I Let us assume that training data is given in the form of
sequences

I One can count the number of occurrence of any two
consecutive values

I For example, we can count how many times occurs the word
pair ”of the” in the training text.

I For obtaining the quantity p(the | of) we have to divide with
the number of times the word ”of” occurs in the training data:

p(the | of) =
p(of the)

p(of)
=

Count(ot the)

Count(of)

I In general, if Ni ,j is the number of times the value i is
followed by the value j :

p(xt = j | xt−1 = i) =
p(xt−1 = i , xt = j)

p(xt−1 = i)
=

Ni ,j∑
j Nij

Markov chain order

I The Markov chain presented in previous slides is called first-order
Markov model.

I It is also called bigram model (especially in language modelling)

I The marginal probabilities p(xt) are called unigram probabilities

I In the unigram model all the variables are independent
p(x0, x1, . . . , xT) =

∏
t p(xt)

I One can also construct higher order Markov chains: a second order
model operates with trigrams:

p(xt | x0, . . . , xt−1) = p(xt | xt−2, xt−1)

x0 x1 x2 x3 x4

Hidden Markov models

I Few realistic sequential processes directly satisfy the Markov
assumption.

I Markov chains cannot capture long-range correlations between
observations.

I Increasing the order leads the number of parameters to blow
up

I This motivates the hidden Markov models (HMM)

I In HMM there is an underlying hidden process that can be
modelled with a first-order Markov chain

I The data is the noisy observation of this process.

HMM: handwriting recognition

I We can only observe the handwritten character images

I The hidden process models the characters written

HMM specification

There are three distributions:

p(x0)

p(xt | xt−1), t = 1, . . . ,T

p(yt | xt), t = 1, . . . ,T

Joint distribution

The joint distribution of the hidden sequence is:

p(x0, . . . , xT) | y0, . . . , yT) ∝ p(x0)p(y0 | x0)
T∏
t=1

p(xt | xt−1)p(yt | xt)

Inference with HMM

I Compute marginal probabilities of hidden variables

I Filtering - compute the belief states p(xt | y0, . . . , yt) online

I Smoothing - compute the probabilities (xt | y0, . . . , yT) offline
using all the evidence

I Find the most likely sequence of hidden variables - Viterbi
decoding

Filtering

I Computing p(xt | y0, . . . , yt) is called filtering, because it
reduces noise in comparison to computing just p(xt | yt).

I Filtering is done using forward algorithm

I Forward algorithm uses dynamic programming - this means
the algorithm is recursive but we reuse the already done
computations.

Forward algorithm

x0 x1 x2 x3 x4

y1 y2 y3 y4

Input:

I Transition matrix

I Initial state distribution

I Observation matrix containing probabilities p(yt | xt)
I Compute the forward probabilities:

αt(xt) = p(xt | y1:t) =
1

Zt
p(yt | xt)

∑
xt−1

p(xt | xt−1αt−1(xt−1))

Smoothing

x0 x1 x2 x3 x4

y1 y2 y3 y4

I Smoothing computes the marginal probabilities p(xt | y1:T) off
line, using all the evidence

I It is called smoothing, because conditioning on the past and
future data the uncertainty will be significantly reduced.

I Smoothing is performed using forward-backward algorithm.

Forward-backward algorithm

I Break the chain into past and future:

p(xt = j | y1:T) ∝ p(xt = j , yt+1:T | y1:t)
∝ p(xt = j | y1:t)p(yt+1:T | xt = j)

I Compute the forward probabilities as before:

αt(xt) = p(xt = j | y1:t)

I Compute the backward probabilities:

βt(xt) =
1

Zt

∑
xt

p(xt+1 | xt)p(yt+1 | xt+1)βt+1(xt+1)

Optimal state estimation

I Compute the smoothed posterior marginal probabilities

p(xt | y1:T) ∝ αt(xt)βt(xt)

I Probabilities measure the posterior confidence in the true
hidden states

I Takes account both the past and the future

Optimal sequence estimation

I Viterbi algorithm computes

x̂ = arg max p(x0, . . . , xt | y1, . . . yT)

I Using dynamic programming it finds recursively the probability
of the most likely state sequence ending with each xt :

γt(xt) = max
x1,...,xt−1

p(x1, . . . , , xt | y1:t)

∝ p(yt | xt)
[
max
xt−1

p(xt | xt−1)γt−1xt−1
]

I A backtracking procedure picks then the most likely sequence.

Learning HMM

I Let us suppose the latent state sequence is available during
training

I Then the transition matrix, observation matrix and initial
state distribution can be estimated by normalized counts

q̂i ,j =
n(i , j)∑
k n(k, j)

τi = {t | xt = i}

θ̂i =
1

| τi |
∑
t∈τi

yt

Learning HMM

I Typically one don’t know the hidden state sequences

I EM algorithm is used, it iteratively maximizes the lower bound
on the true data likelihood

I E-step: Use current parameters to estimate the state using
forward-backward

I M-step: Update the parameters using weighted averages

