A Software Product Line Approach for Semantic
Specification of Block Libraries in Data Flow Languages

3

Arnaud Dieumegard' Andres Toom?'® Marc Pantel’

TIRIT/ENSEEIHT - 2 rue Charles Camichel, 31000 Toulouse
first.last@enseeiht.fr

2Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, EE-12618 Tallinn, Estonia

3|B Krates OU, Maealuse 4, EE-12618 Tallinn, Estonia
andres@krates.ee

TUT CS PhD Seminar IXX9603
24.09.14

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Context

Outline

ﬂ Context
@ Embedded SW development for (safety) critical and high-integrity
systems
@ Current work

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 2/31

Context Embedded SW development for (safety) critical and high-integrity system:

Embedded SW development for

(safety) critical and high-integrity systems

@ Critical systems development is often organized as a V-Cycle
@ V-Cycle is specified in several IEC standards (general safety, railway)
@ Well suited also for DO-178C / ED-12C (avionic)

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Context Current work

Current work

@ Graphical modelling languages are widely used for the development of
complex systems
@ Control and and command algorithms often specified in
o Data flow style: Simulink, Scicos, Xcos, SCADE ...
o State chart/machine style: StateMate, Stateflow, SCADE ...

@ P/Hi-MoCo and its predecessor Gene-Auto
o Development of an open multi-domain code generation toolkit (C, Ada) for
high-integrity embedded systems
e Certification according to the avionic software qualification standard
DO-178 C and similar standards of other domains

@ Current work: Structure and formalize the block library specification

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Block libraries in graphical dataflow languages

Outline

e Block libraries in graphical dataflow languages
@ Graphical dataflow languages

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 5/31

Block libraries in graphical dataflow languages Graphical dataflow languages

Graphical dataflow languages and block libraries

@ Widely-used tools: Simulink, Scicos, Xcos, SCADE ...

@ Main elements are blocks (nodes) and signals (data and control flows)
@ Often used in the design of embedded control and command algorithms
°

Lot of functionality encapsulated in blocks / block libraries
@ (Simulink >300 standard blocks + XX toolboxes)

User extendable - Encapsulation of proprietary industrial IP

Lole >
o .
AND |—h -
MO T > ! Lo4 actiee
[1=t==31
Lo L AND
oz | 1
WO T [t -
I
Loz D

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Block libraries in graphical dataflow languages Graphical dataflow languages

Block semantics

@ Logical structure of a block

Inputs / Outputs O
- Block -

—> Memoy M |———>

@ Operational semantics in synchronous dataflow languages
Initialization { Init / (O, M) := Initialize

Tick / Oy := Compute (lis1, M;)
Execution ™)

Upd / My, := Update (l,1, Mj)

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Block libraries in graphical dataflow languages Graphical dataflow languages

Polymorphism / Configurability

@ Blocks are often polymorphic wrt. data types and arity
(scalars, vectors, matrices, ...)
@ Behavior can be configured via a number of static parameters
(number of inputs, rounding, saturation, ...)
@ E.g. the Simulink Sum block
o Original documentation: 19 pages on the meaning of parameters

e
LT
int32 .
[> int3 1z 2 double [ix3] | double [2x1]
4 5 & 23] jl
a5 double -

Rounding = Floar

!!

1

Sum of elements ower
the 2nd dimension

-
o . wl_ double -
- intg T Ll

P
L

Sum of all elements

Rounding = Ceil

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Specifying block libraries

Outline

© Specifying block libraries
@ Natural language specification
@ Mathematical specification
@ Model-based specification

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages

TUT CS PhD Seminar 24.09.14

9/31

Specifying block libraries

Natural language specification

Specification in a natural language

@ Pros

e Easy to read
o Natural language

4.51 Ssum

4.51.1 Simulink equivalence

Simulink equivalence for this block is Sum block.

4.51.2 Optimizable

Yes, if inputs are scalars.

4.51.3 Characteristics

A purely functional block, serving to sum the block’s inputs, element by element
(element-wise) in case of multiple inputs and to sum the blocks's input elements in
case of single input.

4514 Inputs

Unlimited number of inputs, but must be of the same data type.

In case of different signal types, there can be a mix between scalar and vector signals in
which case the scalar value will be summed to each element of the vector, or scalar and
matrix signals in which case the scalar value will be summed to each element of the
matrix but IMPOSSIBLE to mix vector and matrix signals.

Vector (resp. matrix) input signals must have the same dimension.

If only one input is given then it must be of scalar or vector signal type.

4.51.5 Output

Single output, of the same signal type and data type as the inputs having as value :

If scalar : the sum of its scalar inputs or the sum of its vector input elements

If vector : the sum vector of its vector inputs, element by element (element

@ Cons

o Not formal
e Lengthy
e Ambiguities/errors

4.51.6 Pseudo-code
The associated pseudo-template code is :
+ Ifscalar: ol = i1 + 832 + . //scalar input(s)

0) + 8il[1) + .. //single input (obligatorily

1f vector :
i

int index

for (index = 0; index < ve

size; index +4)(

Sollindex] = illindex] + $i2[index] + . + 815 + .;
)

1F matrix :

i

int index_x = 0;

int index_y
for (index_x = 0 ; x < matrix_x size ; index_x ++)

for (index_y =

index_y < matrix_y_size; index_y ++)
4ol lindex_x][index_y) = illindex_x](index_yl +
8i2(index_x] [index_y] + - + 55 + .;

)

With vector size, matrix size x (and matrix_size y) signify respectively the size
of the output vector, the output matrix lines number, and the output matrix columns.
number. Here, we presume that we have mixed input signals with the 5" signal being a
scalar.

4.51.7 Parameters

Possible values |

[Block input | parameter name |
- Number of inputs | Any integer value. |

Specifying block libraries Mathematical specification

Mathematical specification

@ Based on a mathematical representation of the elements to specify
@ Rely on standardised Math formalisms (MathML,...)

@ Pros @ Cons
Reading

o General purpose language

e Understanding e Too much freedom in specification writing
o Writing o No dedicated variability management
e Formal

P(Inputs) The P(Inputs) parameter is defined as the following :
- Vi € [1,n4], Jop; € [+, =], P(Inputs) = {op;}

Input must be one of the following :
1. T={vie [l,nu],X; € T}
2. T = {nm=1,X € Va(T\5)}

_ | X; € Vu(T\5)
5. 1= {““‘> 1‘{ Xi € Tyg = Xi ¢ Va(Tyg) Aar = ... = an
Xie Mnm{T\B)
4, I = i 1 !
{ﬂm > 1L { X e T\B = X; + Mn‘m(T\H] Aai1=...=anym

A. Dieumegard, A. Toom, M. Pantel

Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 11/31

Specifying block libraries Model-based specification

Model-based specification

@ Inspired from Feature Modeling [Kang 90]
and Software Product Line (SPL) engineering

@ Domain Specific Language specification
@ Purpose-oriented model/language

@ Pros @ Cons
e Focused on the goal to achieve e More difficult to apprehend
e Ease reading, writing and e Not a "standard" language

understanding
e Structured
e Formal

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 12/31

Specifying block libraries Model-based specification

Model-based specification

@ Inspired from Feature Modeling [Kang 90]
and Software Product Line (SPL) engineering

@ Domain Specific Language specification
@ Purpose-oriented model/language

@ Pros @ Cons
e Focused on the goal to achieve e More difficult to apprehend
e Ease reading, writing and e Not a "standard" language

understanding

e Structured

o Formal
@ But also

o Based on standardized formalism (MOF, Ecore)
Available and relatively easily extendable tooling
Model-based verification
Model-based transformations

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 12/31

Specifying block libraries Model-based specification

Feature Modeling [Kang 90]

@ All the different products of a Software Product Line (SPL) are
represented in terms of features

@ Typically in the form of a tree, where sub-features can be:

o Mandatory
o Optional

@ and sub-feature groups can have

o OR-relation (at leat one)
o XOR/Alternative-relation (at most one)

@ Additional cross-tree constraits can be specified
@ Valid feature configuration = Member of the SPL

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Specifying block libraries Model-based specification

Block Library DSL

@ BlockLibrary
o Container for BlockTypes and "Generic" BlockVariants

@ BlockType

e Holds a block specification including BlockVariants and BlockModes
@ BlockVariant

o Parameters, ports and memories

o Relations between BlockVariants: product line engineering approach
@ BlockMode

o Configuration of a block (set of block variants)

o Typing constraints/rules

o Computational semantics
@ Structural correctness as first order logic properties on BlockModes,

BlockVariants, Parameters, Ports and Memories

@ Computational semantics of BlockModes expressed

e axiomatically (pre/post conditions)
e operationally (a simple imperative action language)

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Specifying block libraries Model-based specification

Block Library Meta-model

@ MOF/Ecore: well accepted in the industry and standardized
@ + OCL constraints for static semantics

[[BiockLibrary
| 2 name : Estring
L

| parametertypes

|

subVariants
0. o
[Biockiype Lo

[
ﬁ‘ name : EString |

 BlockVariant
VAN [ame « EString

= specifiesDynamic : EBoolean
ExtEnds
2 VariantSetoperato o0 1 'T .
[YarlantSetOperato variants
—AND p inputs [outputs parameters
cwn [VeriantSet o uts |outes o 0.
SloFerEny [MemervGroup | [[PortGroun [Parameterype
1
o o 3 name : ESting | | @ name : EString
2 1.
modes & min_size : Eint | | = mandatory : EBoolean
= CUELanT implements o max_size : Eint
— ENABLE_PORT Le =
—~ EDGE_ENABLE _POAT | [| BlockMode] . kind : Portkind
— EVENT PORT | 2 name : EString | @ size(): Eint o
L 1
1= 1 computeSemantics directFecaThiough
AUt 0.1 initSemantics
e 0. updateSemantics
- 0. backwardTyping
— INVARIANT 0-* typingConstraint
- poST 0. forwardTyping
1 memoryGroupSpec v
AnnotationLanguage| Annofation I ge]
- ocL o kind c o]
- MATLAB & language : AnnotationLanguage [<———#]_@ blockinstance() : PrimitiveBlock |
- saue = value : Estring 0.1
- A

ieumegard, A. Toomr

Block Library Spec. for Data Flow Lat

Specifying block libraries Model-based specification

Specification decomposition examples

@ The variablity graph helps to understand dependencies between
BlockVariants and BlockModes

SumOfInputs

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 16/31

Specifying block libraries Model-based specification

Specification decomposition examples (2)

@ The variablity graph helps to understand dependencies between
BlockVariants and BlockModes

@ Multiple inheritance and reusable specification parts are possible

Delay

FixedDelayMode

VarDelayMode
VarRstDelayMode

o
"“‘

DelayRoot

Resettable

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Specifying block libraries Model-based specification

Specification decomposition examples (3)

@ The variablity graph helps to understand dependencies between
BlockVariants and BlockModes

@ Multiple inheritance and reusable specification parts are possible

@ Dynamic BlockVariants and BlockModes can be specified in terms of
run-time values (as opposed to static configuration)

Saturate

SaturateUpper

Saturate_Main

SaturateLower

SaturateMode

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 18/31

Applications

Outline

e Applications
@ Tooling
@ Verification of the specification
@ Verification of generated code
@ Other applications

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages

TUT CS PhD Seminar 24.09.14

19/31

Applications

Tooling

MOF/Ecore: Provides tooling capabilities
@ Textual editor

@ Textual/Form editor
(Guillaume Babin’s work)

and generation capabilities
@ Documentation/Requirements
@ Verification

@ Test cases

Website for the BlockLibrary DSL and
applications:

http://block-library.enseeiht.fr/html

library Simulink_Basic {
typeDef realDouble double
typeDef enum onoff {'ON', 'OFF'}
typeDef array hitype of double [16,2]
blockType OneDInter {
varlant OneDInter_Root IsDynamic {
out data sI : double
In data el : double
parameter exth1 : onoff
¥
varlant H1asParameter extends and OneDInter_Root {
parameter h1 : hitype {
struct as fol # forall i:int. (0 <= i < 15) ->
h1[][0] <. h1[i+1][0] #

}
struct as eml # exth1 = OFF #
¥
varlant H1asInput extends and OneDInter_Root {
In data hi : hitype {
struct as fol # forall i:int. (0 <= i < 15) ->
h1[][0] <. h1[i+1][0] #

¥
struct as eml # exthi = ON #

}
mode OneDInter_inf Implements uxor HlasInput,
HlasParameter {
struct as fol # el <. h1[0][0] #
compute as fol # 51 = h1[0][1] #

¥
mode OneDiInter_sup implements uxor HlasInput,
HlasParameter {
struct as fol # el >=. h1[15][0] /\ el >=. h1[0][0] #
compute as fol # s1 = hi[15][1] #

mode OneDlnter_mid implements uxor HiasInput,
HlasParameter {
struct
asfol # el <. h1[15][0] /\ el >=. h1[0][0] #
asfol # exists int. 0 <= i <= 14 >
h1[i][0] <=. el <. h1[i+1]{0] #
compute as fol
51 = hi[ij[1] +.
(e1-h1[[O])*.(hL[H+ L] 1]~ 1[I[1])/-(h 1 [+ 1][0]-h1][0T)) *

Spec. for Data Flow Lan

http://block-library.enseeiht.fr/html

Applications Tc

Tooling (2)

MOF/Ecore: Model to model or model to text transformations

@ Documentation/Requirements generation

2 Sum

2.1 Parameters

Parametor name Possible valuos or DataType

Signs string
TtogerRoundingMode | [Ceiling Convorgent”, Floor, Noarest” Round Sunplost’, Zero]

SaturatcOuliicgerOverflow,

ool © & Ipojectp
[AlDimensions' SpecifiedDinension | © 3 | Execuiaie Toois
it @ 3 | Transtomtons
© 3 | Reusable Components
22 Modes hierarchy © [| Confiuraton Dsta
@ 3 8L BlockLibrary
@ 3 8L Simuink Basc
@ [DroraAn
© 3 DTOR BLComparsToCansiant

> DTOR BLSUMCG.Cote:

3 DTOR BL-Sun-CG-6-SumOfinputs
> DTORBLSUN TSI
© (2 DTOR 8L UntDtay

2.3 Modes
231 Mode SumOfAlIElements

o Variant hierarchy

o+ o+ s

« Input Ports
[Port name [Port rank | Port multiplicity | Port data type |
T [[wll]

o Ouipu PoFE
Block Library Spec. for Data Flow Lat

 DTOR BL-SuM-CG-1-Singllnput_Scalar
) DTOR BLSum-CG-2-Singelmt Vector
 DTOR BLSUM-Co-3-SumOAIElements_Matix
 DTOR BLSUM-CG-+-SUmOTDImension_Mainx
) TOR BLSum-CG-5-SumOfinputs_AlNeg

[DTOR BLSun-Co-1-Singelnput_Scalr &

DTOR BL-Sum-CG-1-Singlelnput_Scalar: i jconfigurton sa
COtSingelnp S

[conten s (now)

 Conditions or this computation mode
isSealar(ino)
sum_over = Allbimensions \/ sum_over = SpecifiedDimension
sum_over = SpecifiedDimension -> dimension =1

isSealar(outo)

 Compute semantics

hen

if signsiil==
ouo=o0-ino;

elseouto =ino

ieumegard, A. Toomr

Applications Verification of the specification

Structural well-formedness

Completeness and disjointness of the block’s specification (variability aspect)

@ A Signature of a BlockMode is a set of BlockVariants it implements in one configuration
@ The Signature of a BlockType is the conjunction of the Signatures of its BlockModes

SiGer = ALy SIGsu;
@ The @ operator specifies that exactly one boolean expression is true:

S={ai,a,....,an},Vi€[1..n],a € B

LI S(1) = (VILy S A (AET ~(S() A 8()))

@ Definition of the signature of a BlockMode:

&
S1Gam = (A5 SCau(i)) ((/\!Q’?M‘ SIGy (,)) (/\"VBM‘ (' @) vou) SIG)y (,.J))))

@ Definition of the signature of a BlockVariant:
_ (AlSCevl |EVBv\ EVayl (| \EVBV(')\
siGsv = (N2 sCav () A ((SIGeyg (,)) A (/\ (o s)

Completeness Disjointness
ViL,SIGay, =T '@, SIGay, =T

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 22/31

Applications Verification of the specification

Semantic consistency

@ The set of BlockSignatures cover all valid (static or dynamic)
configurations of a block type

@ BlockSignatures with identical behaviour are represented by a BlockMode
@ A BlockMode is associated with behaviour specification:
e spec. of the init, compute and update semantic functions
@ These specifications can be given either:
e axiomatically via pre and post-conditions (in some logic) and/or
e operationally via providing the function fun (in an operational language:
OCL, Matlab, ...)
@ The axiomatic and operational specifications are complementary and
allow different usage
@ When both are given, they should form consistent Hoare triples (for each
semantic function):
o {pre} fun {post}

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 23/31

Applications Verification of the specification

Formalisation and verification in Why

@ The BlockLibrary DSL and its structural well-formedness and semantic
consistency properties have been formalised in the Why3 language
@ The specific theories corresponding to each block type are automatically
generated from a BlockLibrary instance
o Implemented as an ATL transformation by Guillaume Babin
@ Verification of the properties is performed automatically
(or semi-automatically in the Why3 toolset using available SMT solvers

BlockLibrary

Constraint | Constraint |

Constraint Constraint

Constraint

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 24/31

Applications

Verification of the specification

BlockLibrary instance example (in Why)

(*

import int.Int
import real.Reallnfix
import datatype.GeneAuto

BlockLibrary DataTypes)

type onoff_type = ON | OFF
type numeric_type = tRealDouble

type hitype_type =

(*

array (array (tRealDouble))

ParameterTypes constraints x)

axiom param_h1_pret:

(3

ax

(x

predicate onedinter_inf (el:numeric_type)

end

forall hi:hitype_type. forall i:int. (0 <= i <
15)
—> h1[i][0] <. h1[i+1][0]
InPortGroup constraints)
iom in_port_h1_pret:
forall hi1:hitype_type. forall i:int. (0 <= i <
15)
— h1[i][0] <. h1[i+1][0]

BlockMode Signature checking *)
(h1:
hitype_type)
(exth1:onoff_type) =
el <. h1[0][0] /\ (exth1 = ON \/ exth1 = OFF)
/\ not (exth1 = ON /\ exth1 = OFF)

Block Library Spec. for Data Flow Lan,

(x Completeness =)
goal OneDinter_completeness:
forall et:numeric_type. forall h1:hitype_type.
forall exth1:onoff_type.

(onedinter_inf el h1 exth1)

\/ (onedinter_sup el h1 extht)

\/ (onedinter_mid el h1 extht)

(* Disjointness =)
goal OneDlinter_disjointness:
forall et:numeric_type. forall h1:hitype_type.
forall exth1:onoff_type.

not ((onedinter_inf et h1 exth1) /\ (

onedinter_sup el h1 exth1))

/\ not ((onedinter_inf el h1 exth1) /\ (
onedinter_mid el h1 exth1))
((onedinter_sup el h1 exth1) /\ (
onedinter_mid el h1 exth1))

/\ not

@ Result

OneDlnter.why OneDinter
OneDInter_completeness_union
(0.02s)

OneDlnter.why OneDinter
OneDlInter_completeness_disjoint :
(0.01s)

OneDlInter.why OneDInter OneDlInter_consistency

Valid (0.01s)

Valid

Valid

TUT CS PhD Semi

Applications Verification of generated code

Going further — Generation of formal annotations’

@ Formal annotations in some (dedicated) language: ACSL, Ada Spark,
Ada 2012 etc. Run-time verification of logical contracts (inv, pre, post)

@ Annotations for instructions generated from blocks
e Conditionals: behavior annotations
o Loops: loop invariants / variants
e Simple instructions: asserts
@ Annotations for assignments generated from signals
@ Annotations for functions generated from (Sub)Systems
@ Pre/post conditions
e Behavior annotations

/+@ loop invariant 0 <= index <= vector_size;
loopinvariant \forall integer m; 0 <= m < index ==> i

o1

b1.0o1[m] == bt1.i1[m] — bt1.i2[m] + ...; S

loop variant vector_size — index; x*/ e
for (int index = 0; index < vector_size; index++){ i3
b1.o1[index] = b1.i1[index] — b1.i2[index] + ...; *J'

} o

"Work by Arnaud Dieumegard

TUT CS PhD Seminar 24.09.14

26/31

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages

Applications Other applications

From BlockLibrary to P Toolset — Possible applications

A_decoration.txt

P_Toolset
Extra Qualified

P.ecore

Contains

BLTR 4 BL_TR_5| BL_TR_6| BL TR 7|

Validation

l

Regs (docs) || Other N
QM “L Docs | ‘L Testing | Venn;fc ?Egﬁ
—— == —

‘ Simulation

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Lat

Applications

Other applications

Generation of test cases — One possible approach

BlockLibrary model Simulation
Valid - o "
aldaton Embedding Simulation
BlockVariant
BlockMode |~ BL_TR.3. ’
BL TR 3.1 > Signature Matlab Function
BlockType
BlockMode 8
: Matlab Function
Simulink Block
BL_TR 6 I
Implements.
code g;r;eraﬂan Produce I
Testing
Verification
TestProcedures
Automatic Code TesiCases Input Data Generation |
Generator BlockMode Simulation Result

Signature BlockMode BlockMode Input Data Oracle

g Signature Expected Test Results
Block Signature Generation |
Code
Generation
Execute Test Procedure |
Source code
Checking for
Test Results | Corespondance |

Pantel

Block Library Spec. for Data Flow Lan,

Conclusions and future work Conclusions

Conclusions

@ MDE-based DSL for formal specification of a block library

o Textual editor with structural verification, documentation generation, etc
Complexity of block types managed by a feature modeling-like approach
Semantic specification via constraints + behavioural fragments
Verification of the specifications’ structural and semantic consistency
Automation of the verification

e Generation of block type specific theories and verification goals —

automatic (ATL)
e Proving the goals — automatic / semi-automatic (Why + SMT solvers)

@ Currently formalised ca 11 Simulink block types (with some limitations)
@ Possible to generate observers / test oracles / test cases
@ Generation of part of the block library configuration for the P Model
Compiler
@ But, need to consider also independence between:
e specification - implementation - verification
@ Work in progress ...

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14 29/31

Conclusions and future work Future work

Future work

Extend the approach and implement more applications
Refine and explore other formal verification possibilities
Test case generation

Integrate more tightly with the P Toolset

Specify a larger block set

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

Conclusions and future work Future work

Thank you!

@ A paper on SPLC 2014:
Software Product Line Conference, Florence (Sept 15-19, 2014)
http://www.splc2014.net

@ Block Library DSL and applications:
http://block-library.enseeiht.fr/html

@ Project P:
http://www.open-do.org/projects/p

@ Gene-Auto:
http://www.geneauto.org

A. Dieumegard, A. Toom, M. Pantel Block Library Spec. for Data Flow Languages TUT CS PhD Seminar 24.09.14

http://www.splc2014.net
http://block-library.enseeiht.fr/html
http://www.open-do.org/projects/p
http://www.geneauto.org

	Context
	Embedded SW development for (safety) critical and high-integrity systems
	Current work

	Block libraries in graphical dataflow languages
	Graphical dataflow languages

	Specifying block libraries
	Natural language specification
	Mathematical specification
	Model-based specification

	Applications
	Tooling
	Verification of the specification
	Verification of generated code
	Other applications

