Lecture 6:
Introduction to formal specifications

Lecture notes by Mike Gordon are used
22.03.2018

ITI8531, Module II: Deductive verification

Recall some definitions

® [Formal Specification - using mathematical nota-
tion to give a precise description of what a pro-
gram should do

® [Formal Verification - using precise rules to math-
ematically prove that a program satisfies a for-
mal specification

o [Formal Development (Refinement) - developing
programs in a way that ensures mathematically
they meet their formal specifications

ITI8531, Module II: Deductive verification

Introduction

e Verification of programs is based on formal specification and on
related verification method.

We will use Floyd-Hoare logic (FHL)

e Proof system of the FHL depends on the programming language for
which FHL is adopted.

e In this course we will deal with the verification of
- deterministic sequential while-programs;
- non-deterministic sequential while-programs
- parallel programs with shared variables;
- parallel programs with message passing.

ITI8531, Module II: Deductive verification

Programs as state transition systems

e Programs are structured specifications of state transition systems.

e Programming language defines constructs for specifying single
transitions and transition compositions.

e State components specified using datatypes are referred in
conditions of command constructs like if-, while-, for-, case-

command etc.

ITI8531, Module II: Deductive verification

Some notations

* Programs are built out of commands like :=, if-, while-, for-, case-
command etc

 The terms 'program' and ‘command' are synonymous.

 'Program’ will be used for commands representing complete
algorithm.

 The 'statement' and ‘assertion’ are used to refer to conditions on
program variables that occur in correctness specifications.

ITI8531, Module II: Deductive verification

Imperative programs - state

e EXxecuting an imperative program has the effect of changing its
state i.e. the values of program variables.

 N.B. languages are more complex than those described in our
course

« they may have states consisting of other things than the values of
variables (e.g. I/O ports).

ITI8531, Module II: Deductive verification

Imperative programs - execution

e To use an imperative program

e first establish a state,
l.e. select some variables to have values of interest

e then execute the program,
(to transform the initial state into a final one)

e inspect the values of variables in the final state to get the result.

ITI8531, Module II: Deductive verification

Simple while-language :

% Expressions

e E -:= N|V|EL1+E2|E1-E2|E1XE2] .. % Arithmetic
e B ::= T|F]JE1=E2|E1LE2] .. % Logic
o C ::= %Commands:
SKIP % empty command (place holder)
| V := E % assignment
| V(E1) := E2 % array assignment
| C1 ; C2 % sequential execution
| IF B THEN C1 ELSE C2 % conditional execution
| BEGIN VAR V1;..;VAR Vn; C END % block command (var. scoping)
| WHILE B DO C % while - loop

| FOR V = E1 UNTIL E2 DO C % for - loop

ITI8531, Module II: Deductive verification

000
0000
o000
o000
. . o0
Terminology and notations :
e Variable
- V1, V2, ..., Vn
e Program state - valuation of program (and control) variables
e Command - gives a rule how the program state changes
- Cl, C2, ... , Cn
e Program - command that includes all the commands in the algorithm
- C
e EXxpression
Arithmetic expression gives a value: El, E2, ... , En
Boolean expression gives a truth-value: B1, B2, ... , Bn

e Statement —logical expression on program variables in the pre- and
postconditions of the specification

- 51, S2, ... , Sn

ITI8531, Module II: Deductive verification

Formal specification %

e Describes the intended behaviour of the program
e Specifies what the program must do
e Has well-defined synax and semantics
that helps avoiding ambiguous and controversial specifications
e Can be used to prove the correctness of the program
e Can be used to generate tests and counterexamples

We will use formalism that is based on FHL and predicate calculus

ITI8531, Module II: Deductive verification

Sir Tony Hoare

Hoare's notation

e C.A.R. Hoare introduced the following nota-
tion called a partial correctness specification for
specifying what a program does:

P O01Q;

where:

e (' is a program from the programming language
whose programs are being specified

e P and () are conditions on the program variables

used in

ITI8531, Module II: Deductive verification

Hoare's notation

e C(Conditions on program variables will be writ-
ten using standard mathematical notations to-
gether with logical operators like:

e A (‘and’), V (‘or’), — (‘not’), = (‘implies’)

e Hoare’s original notation was P {C'} @ not
{P} C {Q@}, but the latter form is now more

widely used

ITI8531, Module II: Deductive verification

Partial Correctness

e An expression {P} C {Q} is called a partial cor-
rectness specification

e P is called its precondition

o () its postcondition

o {P} (C {Q} is true if
e whenever (' is executed in a state satisfying P

e and :f the execution of (' terminates

e then the state in which (s execution terminates sat-
isfies ()

ITI8531, Module II: Deductive verification

Examples

o {X=1}YV:=X{Y=1}

e This says that if the command Y:=X is executed in a
state satisfying the condition X =1

e 1.e. a state in which the value of X i1s 1

e then, if the execution terminates (which it does)

e then the condition Y = 1 will hold

e Clearly this specification is true

ITI8531, Module II: Deductive verification

Examples

o {X=1}Y:=X {Yy=2}

e This says that if the execution of Y:=X terminates
when started in a state satisfying X =1

e then Y = 2 will hold

e This is clearly false

e {X=1} WHILE T DO SKIP {Y = 2}

e This specification is true!

ITI8531, Module II: Deductive verification

Total correctness

e A stronger kind of specification is a total correct-
ness specification

e There is no standard notation for such specifications

e We shall use [P] C [Q]
e A total correctness specification [P] C [Q] is
true if and only if

¢ Whenever (' is executed in a state satisfying P, then
the execution of (' terminates

e After (' terminates () holds

ITI8531, Module II: Deductive verification

Example :

e [X=1] Y:=X; WHILE T DO SKIP [Y = 1]

e This says that the execution of Y:=X;WHILE T DO SKIP
terminates when started in a state satisfying X =1

e after which Y =1 will hold

e This is clearly false

ITI8531, Module II: Deductive verification

Total correctness

e Informally:

Total correctness =
Termanation + Partial correctness

e Total correctness is the ultimate goal

e usually easier to show partial correctness and termi-
nation separately

ITI8531, Module II: Deductive verification

Total correctness

e Termination is usually straightforward to show,
but there are examples where it is not: no one
knows whether the program below terminates
for all values of X

WHILE X>1 DO
IF 0ODD(X) THEN X := (3xX)+1 ELSE X := X DIV 2

e The expression X DIV 2 evaluates to the result of
rounding down X/2 to a whole number

e Exercise: Write a specification which is true if
and only if the program above terminates

ITI8531, Module II: Deductive verification

Auxiliary variables in the specification

o {X=xAY=y} R:=X; X:=Y; Y:=R {X=y A Y=x}

e This says that if the execution of
R:=X; X:=Y; Y:=R

terminates (which it does)

e then the values of X and Y are exchanged

e The variables x and y, which don’t occur in the
command and are used to name the initial val-
ues of program variables X and Y

e They are called auxiliary variables

ITI8531, Module II: Deductive verification

Examples

e {X=x AY=y} BEGIN X:=Y; Y:=X END {X=y A Y=x}

e This says that BEGIN X:=Y; Y:=X END exchanges the
values of X and Y

e This 1s not true

ITI8531, Module II: Deductive verification

Examples :

o {T} C{Q}
e This says that whenever (' halts, () holds
o {P} C{T}

e This specification is true for every condition P and
every command C

e Because T is always true

ITI8531, Module II: Deductive verification

Examples

o [P]CIT]
e This says that (' terminates if initially P holds

e It says nothing about the final state

o [T| C [P]

e This says that (' always terminates and ends in a
state where P holds

ITI8531, Module II: Deductive verification

A more complicated example
{T}

BEGIN
R:=X;
N:=0;

WHILE Y<R DO
BEGIN R:=R-Y; Q:=Q+1 END
END
{R<Y A X=R+(YxQ)}

e Thisis {T} C {R<Y A X=R+ (Y xQ)}

e where C is the command indicated by the braces
above

e The specification is true if whenever the execution
of C halts, then Q is quotient and R is the remainder
resulting from dividing Y into X

e It is true (even if X is initially negative!)

e In this example a program variable Q is used. This
should not be confused with the () used in previous
examples to range over postconditions

ITI8531, Module II: Deductive verification

Some exercises

¢ When is [T| C' [T| true?

e Write a partial correctness specification which
is true if and only if the command C' has the
effect of multiplying the values of X and Y and
storing the result in X

e Write a specification which is true if the execu-
tion of (' always halts when execution is started
in a state satisfying P

ITI8531, Module II: Deductive verification

Specification can be tricky : Sorting

® Suppose C,,; is a command that is intended to
sort the first n elements of an array

e To specify this formally, let SORTED(A,n) mean

ITI8531, Module II: Deductive verification

Sorting: naive spec

e A first attempt to specify that C,,; sorts is

{1 <N} C,_, {SORTED(A,N)}

e Not enough:

e SORTED(A,N) can be achieved by simply zeroing the
first N elements of A

ITI8531, Module II: Deductive verification

Sorting: permutation required

It is necessary to require that the sorted ar-
ray is a rearrangement, or permutation, of the
original array

To formalise this, let PERM(A, A’, N) mean that
A(l), A(2),..., Aln)

is a rearrangement of
A1), A(2),...,A(n)

An improved specification that C,,; sorts:

{1<N A A=a} C,,+ {SORTED(A,N) A PERM(A,a,N)}

ITI8531, Module II: Deductive verification

Sorting: still not correct

e The following specification is true

{1<N}
N:=1
{SDRTED(A,N) A PERM(A,a,N)}

e Must say explicitly that N is unchanged

ITI8531, Module II: Deductive verification

Sorting: still not correct

e A better specification is thus:

{1<N A A=a A N=n}

Cso‘r't
{SORTED(A,N) A PERM(A,a,N) A N=n}

e Is this the correct specification?

e What if N is larger than the size of the array?

ITI8531, Module II: Deductive verification

Summary

e \We have given a notation for specifying
e partial correctness of programs

o total correctness of programs
e Itis easy to write incorrect specifications
e and we can prove the correctness of the incorrect programs

e Itisrecommended to use testing, simulation and
formal verification hand in hand.

ITI8531, Module II: Deductive verification

	 Lecture 6: � Introduction to formal specifications
	Recall some definitions
	Introduction
	Programs as state transition systems
	Some notations
	Imperative programs - state
	Imperative programs - execution
	Simple while-language
	Terminology and notations
	Formal specification
	Hoare’s notation
	Hoare’s notation
	Partial Correctness
	Examples
	Examples
	Total correctness
	Example
	Total correctness
	Total correctness
	Auxiliary variables in the specification
	Examples
	Examples
	Examples
	A more complicated example
	Some exercises
	Specification can be tricky : Sorting
	Sorting: naive spec
	Sorting: permutation required
	Sorting: still not correct
	Sorting: still not correct
	Summary

