Lecture 6: Introduction to formal specifications

Lecture notes by Mike Gordon are used 22.03.2018

Recall some definitions

- Formal Specification using mathematical notation to give a precise description of what a program should do
- Formal Verification using precise rules to mathematically prove that a program satisfies a formal specification
- Formal Development (Refinement) developing programs in a way that ensures mathematically they meet their formal specifications

Introduction

 Verification of programs is based on formal specification and on related verification method.

We will use Floyd-Hoare logic (FHL)

- Proof system of the FHL depends on the programming language for which FHL is adopted.
- In this course we will deal with the verification of
 - deterministic sequential while-programs;
 - non-deterministic sequential while-programs
 - parallel programs with shared variables;
 - parallel programs with message passing.

Programs as state transition systems

- Programs are <u>structured specifications</u> of state transition systems.
- Programming language defines constructs for specifying single transitions and transition compositions.
- State components specified using datatypes are referred in conditions of command constructs like if-, while-, for-, casecommand etc.

- Programs are built out of *commands* like :=, *if*-, *while-, for-, case-* command etc
- The terms 'program' and 'command' are synonymous.
- 'Program' will be used for commands representing complete algorithm.
- The 'statement' and 'assertion' are used to refer to conditions on program variables that occur in correctness specifications.

- Executing an imperative program has the effect of changing its state i.e. the values of program variables.
- N.B. languages are more complex than those described in our course
- they may have states consisting of other things than the values of variables (e.g. I/O ports).

Imperative programs - execution

- To use an imperative program
 - first establish a state,
 i.e. select some variables to have values of interest
 - then execute the program,
 (to transform the initial state into a final one)
 - inspect the values of variables in the final state to get the result.

Simple while-language

FOR V := E1 UNTIL E2


```
% Expressions
• E ::= N|V|E1+E2|E1-E2|E1\times E2| ...
                                               % Arithmetic
• B ::= T | F | E1 = E2 | E1 \le E2 | ...
                                               % Logic
                                               %Commands:
         SKIP
                                               % empty command (place holder)
         V := E
                                               % assignment
         V(E1) := E2
                                               % array assignment
         C1 ; C2
                                               % sequential execution
                                               % conditional execution
          IF B THEN C1 ELSE C2
          BEGIN VAR V1;...; VAR Vn; C END % block command (var. scoping)
         WHILE B DO
                                               % while - loop
```

% for - loop

Terminology and notations

- Variable
 - V1, V2, ..., Vn
- Program state valuation of program (and control) variables
- Command gives a rule how the program state changes
 C1, C2, ..., Cn
- Program command that includes all the commands in the algorithm
 C
- Expression
 - Arithmetic expression gives a value: E1, E2, ..., En
 - Boolean expression gives a truth-value: B1, B2, ..., Bn
- Statement logical expression on program variables in the pre- and postconditions of the specification
 - S1, S2, ..., Sn

- Describes the intended behaviour of the program
- Specifies <u>what</u> the program must do
- Has well-defined synax and semantics
 that helps avoiding ambiguous and controversial specifications
- Can be used to prove the correctness of the program
- Can be used to generate tests and counterexamples

We will use formalism that is based on FHL and predicate calculus

Hoare's notation

• C.A.R. Hoare introduced the following notation called a partial correctness specification for specifying what a program does:

$$\{P\} \ C \ \{Q\}$$

where:

- C is a program from the programming language whose programs are being specified
- P and Q are conditions on the program variables used in C

- Conditions on program variables will be written using standard mathematical notations together with *logical operators* like:
 - \land ('and'), \lor ('or'), \neg ('not'), \Rightarrow ('implies')
- Hoare's original notation was $P \{C\}$ Q not $\{P\}$ C $\{Q\}$, but the latter form is now more widely used

Partial Correctness

- An expression $\{P\}$ C $\{Q\}$ is called a partial correctness specification
 - P is called its precondition
 - Q its postcondition
- $\{P\}$ C $\{Q\}$ is true if
 - whenever C is executed in a state satisfying P
 - and if the execution of C terminates
 - then the state in which C's execution terminates satisfies Q

- $\{X = 1\} Y := X \{Y = 1\}$
 - This says that if the command Y:=X is executed in a state satisfying the condition X=1
 - i.e. a state in which the value of X is 1
 - then, if the execution terminates (which it does)
 - then the condition Y = 1 will hold
 - Clearly this specification is true

- $\{X = 1\} Y := X \{Y = 2\}$
 - This says that if the execution of Y:=X terminates when started in a state satisfying X=1
 - then Y = 2 will hold
 - This is clearly false
- $\{X = 1\}$ WHILE T DO SKIP $\{Y = 2\}$
 - This specification is true!

- A stronger kind of specification is a total correctness specification
 - There is no standard notation for such specifications
 - We shall use $[P] \ C \ [Q]$
- A total correctness specification [P] C [Q] is true if and only if
 - Whenever C is executed in a state satisfying P, then the execution of C terminates
 - After C terminates Q holds

- [X = 1] Y := X; WHILE T DO SKIP [Y = 1]
 - This says that the execution of Y:=X; WHILE T DO SKIP terminates when started in a state satisfying X=1
 - after which Y = 1 will hold
 - This is clearly false

• Informally:

 $Total\ correctness =$ $Termination + Partial\ correctness$

- Total correctness is the ultimate goal
 - usually easier to show partial correctness and termination separately

• Termination is usually straightforward to show, but there are examples where it is not: no one knows whether the program below terminates for all values of X

```
WHILE X>1 DO

IF ODD(X) THEN X := (3\times X)+1 ELSE X := X DIV 2
```

- The expression X DIV 2 evaluates to the result of rounding down X/2 to a whole number
- Exercise: Write a specification which is true if and only if the program above terminates

Auxiliary variables in the specification

- $\{X=x \land Y=y\}$ R:=X; X:=Y; Y:=R $\{X=y \land Y=x\}$
 - This says that if the execution of

$$R:=X; X:=Y; Y:=R$$

terminates (which it does)

- then the values of X and Y are exchanged
- The variables x and y, which don't occur in the command and are used to name the initial values of program variables X and Y
- They are called auxiliary variables

- $\{X=x \land Y=y\}$ BEGIN X:=Y; Y:=X END $\{X=y \land Y=x\}$
 - This says that BEGIN X:=Y; Y:=X END exchanges the values of X and Y
 - This is not true

- $\bullet \quad \{\mathtt{T}\} \ C \ \{Q\}$
 - This says that whenever C halts, Q holds
- $\{P\}$ C $\{\mathtt{T}\}$
 - \bullet This specification is true for every condition P and every command C
 - Because T is always true

- \bullet [P] C [T]
 - This says that C terminates if initially P holds
 - It says nothing about the final state
- \bullet [T] C [P]
 - This says that C always terminates and ends in a state where P holds

A more complicated example

```
 \begin{cases} \texttt{T} \\ \texttt{BEGIN} \\ \texttt{R} := \texttt{X} ; \\ \texttt{Q} := \texttt{O} ; \\ \texttt{WHILE Y} \leq \texttt{R DO} \\ \texttt{BEGIN R} := \texttt{R} - \texttt{Y} ; \texttt{Q} := \texttt{Q} + \texttt{1 END} \\ \texttt{END} \\ \texttt{END} \\ \texttt{R} < \texttt{Y} \ \land \ \texttt{X} = \texttt{R} + (\texttt{Y} \times \texttt{Q}) \} \end{cases}
```

- This is $\{T\}$ C $\{R < Y \land X = R + (Y \times Q)\}$
 - ullet where C is the command indicated by the braces above
 - The specification is true if whenever the execution of C halts, then $\mathbb Q$ is quotient and $\mathbb R$ is the remainder resulting from dividing $\mathbb Y$ into $\mathbb X$
 - It is true (even if X is initially negative!)
 - In this example a program variable Q is used. This should not be confused with the Q used in previous examples to range over postconditions

- When is [T] C [T] true?
- Write a partial correctness specification which is true if and only if the command C has the effect of multiplying the values of X and Y and storing the result in X
- Write a specification which is true if the execution of C always halts when execution is started in a state satisfying P

Specification can be tricky: Sorting

- Suppose C_{sort} is a command that is intended to sort the first n elements of an array
- To specify this formally, let SORTED(A, n) mean

$$A(1) \le A(2) \le \ldots \le A(n)$$

Sorting: naive spec

• A first attempt to specify that C_{sort} sorts is

$$\{1 \leq N\}$$
 C_{sort} $\{SORTED(A,N)\}$

- Not enough:
 - SORTED(A,N) can be achieved by simply zeroing the first N elements of A

Sorting: permutation required

- It is necessary to require that the sorted array is a rearrangement, or permutation, of the original array
- To formalise this, let PERM(A, A', N) mean that

$$A(1), A(2), \ldots, A(n)$$

is a rearrangement of

$$A'(1), A'(2), \ldots, A'(n)$$

• An improved specification that C_{sort} sorts:

$$\{1 \le N \land A=a\} C_{sort} \{SORTED(A,N) \land PERM(A,a,N)\}$$

Sorting: still not correct

• The following specification is true

```
\{1 \le N\}
N:=1
\{SORTED(A,N) \land PERM(A,a,N)\}
```

Must say explicitly that N is unchanged

Sorting: still not correct

• A better specification is thus:

$$\begin{aligned} & \{ 1 \leq \mathbb{N} \ \land \ \mathbb{A} = \mathbb{a} \ \land \ \mathbb{N} = \mathbb{n} \} \\ & C_{sort} \\ & \{ \texttt{SORTED(A,N)} \ \land \ \texttt{PERM(A,a,N)} \ \land \ \mathbb{N} = \mathbb{n} \} \end{aligned}$$

- Is this the correct specification?
 - What if N is larger than the size of the array?

- We have given a notation for specifying
 - partial correctness of programs
 - total correctness of programs
- It is easy to write incorrect specifications
 - and we can prove the correctness of the incorrect programs
- It is recommended to use testing, simulation and formal verification hand in hand.