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Programming and Verification

• Verification with Model Checking:
• Given a program (model) P and a specification ϕ, check that P satisfies ϕ .
• Success: 

• Usage is increasing with several available model checkers based on advanced
algorithmic methods.

• Issues: 
• Designing P is hard and expensive.

• Redesigning P when P does not satisfy ϕ is hard and expensive.

• Verification with Theorem Proving:
• Similar issues as above.

• Alternative solution:
• Start from specification ϕ and synthesize P such that P satisfies ϕ .
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Synthesis – What it is about?

• The main motivation is that „if we can verify why not go directly from
specification to correct-by-construction systems by synthesis?“

• Various approaches exist:
• Deductive approach where first the realizability of a function is proved and 

then the program is extracted from the proof.

• Computational approach where a transformational program is synthesized to 
produce a result on termination in terms of input and output relations.
• By some called classical approach or just program synthesis. 

• Reactive/Temporal approach where programs are synthesized for ongoing
computations (protocols, operating systems, robot controllers, etc).

• The focus of this course is on the reactive/temporal approach.
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Reactive Synthesis

• „if we can verify why not go directly from specification to correct-by-
construction systems by synthesis?“

• Now we are in 2019 and still „directly“ involves several transformational
steps in the background no matter the underlying approach.

• Old topic started already in 1960s by Church.
• Given a circuit interface specification partitioned to inputs and outputs and a 

behavioral specification in first order logic, determine if there is an automaton 
that realizes the specification. If the specification is realizable, construct an 
implementing automaton.
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History of reactive synthesis

• Vardi, Wolper and Sistla in 1983 [5] showed that the translation from 
LTL to automata is of elementary (exponential) complexity.

• Safra in 1988 [6] showed that the construction of tree automata for 
strategy trees wrt LTL specification is doubly exponential (using [5]).
• Procedure for the determinization of Rabin automata.

• In 1989 Pnueli and Rosner [7] established LTL realizability to be 
2EXPTIME complete using Safra’s approach.
• Very high complexity when determinizing non-deterministic automata!

• Caused halting of research in this field for many years. 
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History of reactive synthesis

• From beginning of 2000s this research topic was brought back to the
scene with several approaches offering „Safraless“ solutions to avoid
the very expensive determinisation step and also better algorithms
working on „symbolic“ representation of the state space.

• The focus of this part of the course has been on one such approach
implemented with the tool Acacia+. 
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System specification: satisfiability vs realizability

• Satisfiability: Exists some behavior that satisfies the specification. 

• Realizability: Exists system that implements the specification and it 
must work for all inputs (controlled by the environment) to the 
system.
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Example on satisfiability

• Example: Printer specification

• Ji - job i submitted, Pi - job i printing, i ∈ {1,2} .

• Safety property: two jobs are not printing together - always ¬(P1 ∧ P2)

• Liveness property: every job is eventually printed
• always 𝑖=1ٿ

2 ( 𝐽i → 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑃i)

• Is specification satisfiable? Yes!

• Model M: A single state where Ji , Pi are all false.

• Can we extract a program from M? No!

• Why? M handles only one input sequence. 

• Ji are inputs controlled by the environment. We need a system that handles all 
input sequences.

• Only satisfiability is not enough for synthesis!
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Formal context for synthesis

• A specification will be in LTL over input and output propositions.

• A system will be an automaton with output.

• Input and output are combined to create a sequence of assignments
to propositions.

• All possible infinite paths over the automaton should satisfy the
specification.
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LTL preliminaries

• Formal language which extends the propositional Boolean logic.

• Variables: atomic propositions, e.g., p and q.

• A set of atomic propositions partitioned to inputs and outputs denoting the 
basic facts about a system and its environment.

• Usual Boolean operators are allowed, e.g., p → q (¬p ∨ q) is an LTL formula, 
but it refers to the first element of an infinite sequence.
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LTL preliminaries – Operators and formulae

Temporal operators

• G: globally (always), e.g., G(p → q) means “in each element of the sequence, 

p → q holds”.

• F: in the future, e.g., F(p → q) means “for some element of the sequence, p → q
holds”.

• X: on the next step, e.g., X(p → q) means “p → q holds for the second element of 
the sequence”.

• U: until, e.g., p U q means “q must happen at some step, and the sequence must 
satisfy p until (non-inclusive) q happens”.

• Linear Temporal Logic formulae are constructed as follows:

• ϕ ::= p ‖ϕ∧ϕ ‖ ¬ϕ ‖ϕ1 Uϕ2 ‖ ...
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Automata
• Systems with discrete states.

• Formally, 𝐴 = 〈Σ, 𝑄, 𝛿, 𝑞0 〉, where
• Σ – a finite input alphabet.
• 𝑄– a finite set of states.
• 𝛿: 𝑄 × Σ → 2𝑄 – a transition function associating with state and an input letter a set 

of successor states.
• 𝑞0– an initial state.

• An input word 𝑤 = 𝜎0, 𝜎1, … is a sequence of letters from Σ.

• A run r = q0, q1, … over 𝑤 is a sequence of states starting from q0 such that 
for every i ≥ 0 we have qi+1 ∈ 𝛿(𝑞𝑖, 𝜎𝑖) .

• An automaton is deterministic if for every 𝑞 ∈ 𝑄 and 𝜎 ∈ Σ we have

|𝛿(𝑞, 𝜎)|≤ 1.

• Several variations exist: Rabin, Büchi, ”Safety”, Uppaal Timed Automata, ... 

14.05.2019 12



Games for Synthesis – Why?

• We need to synthesize a system that implements the specification 
and it must work for all inputs (controlled by the environment) to the 
system.

• Controlling so that uncontrollable events do not lead to damage.

• This can be a two-player game.

• Realizability with regard to games: Existence of winning strategy for 
the system in a game against the environment.
• Addressed (rather) efficiently by Pnueli and Rosner [7] providing better

algorithms (based on μ-calculus and least fixpoint) compared to previous
approaches.

• But still these approaches were based on Safra’s highly complex determinizing
step.
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Games

• Formally, a game is 𝐺 = 〈𝑉, 𝑉0, 𝑉1, 𝐸, 𝛼〉, where
• 𝑉 is a set of nodes.
• 𝑉0 and 𝑉1 form a partition of 𝑉. 𝑉0 concern the System and 𝑉1 the Environment. 
• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

• A play is 𝜋 = 𝑣0, 𝑣1, …
• 𝛼 is a set of winning plays.

• A strategy for player 𝑖 is a function 𝑓𝑖 : 𝑉∗ ⋅ 𝑉𝑖→ 𝑉 such that
(v, 𝑓𝑖( 𝑤 ⋅ 𝑣)) ∈ 𝐸.

• A play 𝜋 = 𝑣0, 𝑣1, … is compatible with 𝑓𝑖 if for every 𝑗 ≥ 0 such that 𝑣𝑗 ∈ 𝑉𝑖
we have 𝑣𝑗+1 = 𝑓𝑖 (𝑣0 ⋯ 𝑣𝑗 ).

• A strategy for player 0 is winning if every play compatible with it is in 𝛼. A 
strategy for player 1 is winning if every play compatible with it is not in 𝛼.

• A node 𝑣 is won by player 𝑖 if she has a winning strategy for all plays 
starting from 𝑣.
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A play of a game

Environment

System
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Games - Realizability and Synthesis
• Realizability: Exists winning strategy for System.

• Synthesis: Obtain such winning strategy. How?
• With a Transducer - Moore Machine (also Mealy depending on approach).

• Formally, T = 〈Δ,Σ,Q,q0,α, β〉, where
• Δ – input alphabet
• Σ – output alphabet
• Q – states
• q0 – initial state
• α : Q × Δ→ Q – transition function
• β : Q → Σ – output function.

• A transducer representing a winning strategy can be extracted from
the winning states of the system after solving the game.
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Game types for synthesis

• Safety games
• Avoiding the „bad“ state of the safety automaton.

• Reachability games – dual to safety games.
• Trying to reach a target state.

• Büchi games
• Accepting states from which system can force returning to an accepting state

infinitely often.

• Almost the same as for reachability games.
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Avoiding the Classical Approach to LTL Synthesis

• LTL synthesis is a challenging problem due to 2EXPTIME theoretical
complexity and lack of scalable algorithms for determinization of automata 
and solving games.

• There are some LTL-based synthesis approaches offering „Safraless“ 
solutions to avoid the very complex determinisation step and also better
algorithms working on „symbolic“ representation of the state space during
the game.
• Even translating LTL formulae to symbolic automaton in the first place.

• Acacia+ and the techniques around it is one such „Safraless“ approach. 
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Classical solution by Pnueli and Rosner
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The problem has been shown to be 2ExpTime-Complete by the same authors.



Acacia+: A tool for LTL synthesis

• Main contributions:
• Efficient symbolic incremental algorithms based on antichains for game

solving.
• Synthesis of small winning strategies, when they exist.
• Compositional approach for large conjunctions of LTL formulas.
• Performance is better or similar to other existing tools but its main advantage 

is the generation of compact strategies.

• Application scenarios:
• Synthesis of control code from high-level LTL specifications.
• Debugging of unrealizable specifications by inspecting compact counter 

strategies.
• Generation of small deterministic automata from LTL formulas, when they 

exist.
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Acacia+ Safraless approach
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• Safety games are the simplest games to solve!



Acacia+ Safraless approach
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• Safety games are the simplest games to solve!



Acacia+ and LTL Transformation to Automata (1)

• An infinite word automaton is a tuple A = (Σ,Q, q0, α, δ) where:
• Σ is the finite alphabet,

• Q is a finite set of states, 

• q0 ∈ Q is the initial state,

• α ⊆ Q is a set of final states and 

• δ ⊆ Q × Σ × Q is the transition relation.
• For all q ∈ Q and all σ ∈ Σ, δ(q, σ) = {q´| (q, σ, q´) ∈ δ}.

• A is deterministic if ∀q ∈ Q・∀σ ∈ Σ・|δ(q, σ)| ≤ 1.

• A is complete if ∀q ∈ Q・∀σ ∈ Σ・δ(q, σ) = ∅.
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Acacia+ and LTL Transformation to Automata (2)

• A run of A on a word w = σ0σ1・・・∈ Σω is an infinite sequence of states ρ = ρ0ρ1

・・・∈ Qω such that ρ0 = q0 and ∀i ≥ 0・qi+1 ∈ δ(qi, ρi).

• The set of runs of A on w is denoted by RunsA(w).

• The number of times state q occurs along run ρ is denoted by Visit(ρ, q).

• Three acceptance conditions (a.c.) are considered for infinite word automata. A 
word w is accepted by A if:

• Non-deterministic Büchi : ∃ρ ∈ RunsA(w)・∃q ∈ α・Visit(ρ, q) = ∞
• Runs visits final states infinitely often.

• Universal Co-Büchi : ∀ρ ∈ RunsA(w)・∀q ∈ α・Visit(ρ, q) < ∞
• Runs visit final states finitely often.

• Universal K-Co-Büchi : ∀ρ ∈ RunsA(w)・∀q ∈ α・Visit(ρ, q) ≤ K
• Runs visit at most K final states.
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Acacia+ and LTL Transformation to Automata (3)

• The set of words accepted by A with the non-deterministic Büchi a.c. is 
denoted by Lb(A). 
• This implies that A is a non-deterministic Büchi word automaton (NBW).

• Similarly, the set of words accepted by A with the universal co-Büchi and 
universal K-co-Büchi a.c., are denoted respectively by Luc(A) and Luc,K(A).
• With those interpretations, A is a universal co-Büchi automaton (UCW) and 

that (A,K) is a universal K-co-Büchi automaton (UKCW) respectively.

• By duality, Lb(A) = 𝐿uc(𝐴) for any infinite word automaton A. 

• Also, for any 0 ≤ K1 ≤ K2, Luc,K1(A) ⊆ Luc,K2(A) ⊆ Luc(A).
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Turn-based Automata for Realizability of Games (1)

• To reflect the game point of view of the realizability problem the notion of turn-
based automata is used to define the specification.

• A turn-based automaton A over the input alphabet ΣI and the output alphabet ΣO

is a tuple A = (ΣI, ΣO, QI, QO, q0, α, δI, δO) where:

• QI,QO are finite sets of input and output states respectively,

• q0 ∈ QO the initial state,

• α ⊆ QI ∪ QO is the set of final states,

• δI ⊆ QI × ΣI × QO and δO⊆ QO × ΣO × QI are the input and output transition 
relations.

• A is complete if for all qI∈ QI, and all σI ∈ ΣI, δI(qI, σI) ≠ ∅, and for all qO ∈ ΣO and 
all σO ∈ ΣO, δO(qO, σO) ≠ ∅.
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Turn-based Automata for Realizability of Games (2)

• Turn-based automata A run on words from Σω.

• A run on a word w = (o0∪ i0)(o1∪ i1)・・・∈ Σω is an infinite sequence of states ρ 
= ρ0ρ1・・・∈ (QOQI)

ω such that ρ0 = q0 and for all j ≥ 0, 

(ρ2j, oj, ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI.

• All acceptance conditions we show carry over to turn-based automata.

• Every UCW (resp. NBW) with state set Q and transition set Δ is equivalent to a 
turn-based UCW (tbUCW) (resp. tbNBW) with |Q| + |Δ| states:
• the new set of states is Q ∪ Δ, 
• final states remain the same, 

• and each transition r = q
𝜎
𝑖
∪ 𝜎

𝑜
q´ ∈ Δ where σo ∈ ΣO and σi ∈ ΣI is split into a 

transition q 
𝜎
𝑜

r and a transition r
𝜎
𝑖

q´.
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Example of tbUCW
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• tbUCW for Fq → (pUq) where I = {q} and 
O = {p}

• Output states QO = {1, 4, 6, 8} are 
depicted by squares and input states QI

= {2, 3, 5, 7, 9} by circles
• T stands for the sets ΣI or ΣO, depending 

on the context, ¬q (resp. ¬p) stands for 
the sets that do not contain q (resp. p), 
i.e. the empty set.

• At state 1, if controller does not assert p 
and next the environment does not 
assert q, then the run is in state 4. From 
this state, whatever the controller does,
if the environment asserts q, then the 
controller loses, as state 6 will be visited 
infinitely often.

• A strategy for the controller is to assert p all the time, 
therefore the runs will loop in states 1 and 2 until the 
environment asserts q. Afterwards the runs will loop in 
states 8 and 9, which are non-final.



Finite state strategies

• We know that if an LTL formula is realizable, there exists a finite-state strategy 
that realizes it [PR89].

• Finite-state strategies are represented as complete Moore machines in Acacia+.
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• The LTL realizability problem reduces to decide, given a tbUCW A over inputs ΣI

and outputs ΣO, whether there is a non-empty Moore machine M such that 
L(M) ⊆ Luc(A).

• The tbUCW is equivalent to an LTL formula given as input and is constructed by
using tools Wring or LTL2BA.



Bounding the number of visited final states
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Lemma 1. Given a Moore machine M with m states, and a tbUCW A with n states, 
if L(M) ⊆ Luc(A), then all runs on words of L(M) visit at most m×n final states.

Proof. The infinite paths of M starting from the initial state define words that are 
accepted by A. Therefore in the product of M and A, there is no cycle visiting an 
accepting state of A, which allows one to bound the number of visited final states 
by the number of states in the product.

Corollary. L(M) ⊆ Luc(A) iff L(M) ⊆ Luc, mxn(A)



Reduction to a bounded universal K-co-Büchi
automaton

Lemma 2. Given a realizable tbUCW A over inputs ΣI and outputs ΣO with n 
states, there exists a non-empty Moore machine with at most n2n+2 + 1 states 
that realizes it.

Proof. In the paper. Re-using an older result by Safra.

Theorem. Let A be a tbUCW over ΣI, ΣO with n states and K = 2n(n2n+2 + 1) (from 
above proof). Then A is realizable iff (A,K) is realizable.
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Determinization of UKCWs

• What is left is to reduce the tbUKCW realizability problem to a safety
game.

• It is based on the determinization of tbUKCWs into complete turn-
based deterministic 0-Co-Büchi automata, which can also be viewed 
as safety games.

• The resulting deterministic automaton is always equipped with a 
partial-order on states that can be used to efficiently manipulate its 
state space using the antichain method.
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Determinization of UKCWs

• Lemma: UKCWs are determinizable.

• Sketch of Proof: Let A = (Σ, Q, q0, α, Δ, K) be a UKCW.

• For each state q, count the maximal number of final states visited by 
runs ending up in q.
• Extending the usual subset construction with counters.

• Set of states F: counting functions F from Q to [-1,0,...,K+1].
• The counter of a state q is set to −1 when no run up to q visited final states.

• Initial counting function F0: q → (q0 ∈ α) if q = q0, -1 otherwise.

• Final states are functions F such that ∃q: F(q) > K.
• The final states are the sets in which a state has its counter greater than K.
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Determinization of tbUKCWs

• Let A be a tbUKCW (ΣO, ΣI, QO, QI, q0, α, ΔO, ΔI ) with K ∈ ℕ. 
• Let Q = QO ∪ QI and Δ = ΔO ∪ ΔI.

• Let det(A,K) = (ΣO,ΣI,FO, FI, F0, α´, δO, δI) where:
• Set of states FO: counting functions FO from QO to [-1,0,...,K+1].

• Set of states FI: counting functions FI from QI to [-1,0,...,K+1].

• Initial counting function F0: q ∈ QO → (q0 ∈ α) if q = q0, -1 otherwise.

• α´ = {F ∈ FO ∪ FI| ∃q, F(q) > K}.
• succ(F, σ) = q → max{min(K + 1, F(p) + (q ∈ α)) | q ∈ Δ(p, σ), F(p) ≠ −1}

• There is a successor state if the run up to p visited finaal states.

• δO = succ|FO × ΣO ,      δI = succ|FI × ΣI
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Reduction to Safety Games

• The game G(A,K) can be defined as follows: 
• it is det(A,K) where input states are viewed as Player I’s states (env.) and 

output states as Player O’s states (system).

• G(A,K) = (FO, FI, F0, T, safe) where safe = F\α´ and T = {(F, F´) |

∃σ ∈ ΣO∪ ΣI , F´ = succ(F, σ)}.

Theorem 2 (Reduction to a safety game). Let A be a tbUKCW over 
inputs ΣI and outputs ΣO with n states (n > 0), and let K = 2n(n2n+2 + 1). 
The specification A is realizable iff Player O has a winning strategy in 
the game G(A,K).
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Safety Game

• A game arena is a tuple G = (SO, SI, s0, T, safe) where SI, SO are disjoint sets of 
player states, s0 ∈ SO is the initial state, T ⊆ SO × SI ∪ SI × SO is the transition 
relation and safe is the safety consition.

• A finite play on G of length n is a finite word π = π0π1 . . . πn ∈ (SO ∪ SI)
∗

s. t. π0 = s0 and for all i = 0, . . . , n − 1, (πi, πi+1) ∈ T. 

• A winning condition W is a subset of (SOSI)
*.

• A play π is won by Player O if π ∈ W, otherwise it is won by Player I.

• A strategy λi for Player i (i ∈ {I,O}) is a mapping that maps any finite play whose 
last state s is in Si to a state s´ s. t. (s, s´) ∈ T.

• The outcome of a strategy λi of Player i is the set OutcomeG(λi) of infinite plays π = 
π0π1π2 . . . s.t. for all j ≥ 0, if πj ∈ Si, then πj+1 = λi(π0, . . . , πj).

• A strategy λO for Player O is winning if OutcomeG(λO) ⊆ safeω.
• Must void the bad states!
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Safety Game
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Safety Game
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Safety Game
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Safe states
System

controller

wins if it has 

a strategy to 

keep the 

system in 

safe states.



Example of tbUCW
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• tbUCW for Fq → (pUq) where I = {q} and 
O = {p}

• Output states QO = {1, 4, 6, 8} are 
depicted by squares and input states QI

= {2, 3, 5, 7, 9} by circles
• T stands for the sets ΣI or ΣO, depending 

on the context, ¬q (resp. ¬p) stands for 
the sets that do not contain q (resp. p), 
i.e. the empty set.

• At state 1, if controller does not assert p 
and next the environment does not 
assert q, then the run is in state 4. From 
this state, whatever the controller does,
if the environment asserts q, then the 
controller loses, as state 6 will be visited 
infinitely often.

• A strategy for the controller is to assert p all the time, 
therefore the runs will loop in states 1 and 2 until the 
environment asserts q. Afterwards the runs will loop in 
states 8 and 9, which are non-final.



Solving safety games

• Algorithms for solving safety games are constructed using the so-
called controllable predecessor operator.
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Solving safety games with Acacia+

• Let G(A,K) = (FO, FI, F0, T, safe) and set of all counting functions F = FO ∪ FI.

• The controllable predecessor operator is based on the two following 
monotonic functions over the superset of the counting functions 2F :
• PreI : 2FO → 2FI ,  PreO : 2FI → 2FO.

• Let P ⊆ F be a subset of system positions. The safe controllable
predecessors of P are then:

CPre(P) = {F | ∃o ⊆ O, ∀F’, ((Fo),F’) ∈ T ⇒ F’ ∈ P} ∩ safe

14.05.2019 42



Properties of the controllable predecessor - 1

• Let CPre = PreO ◦ PreI . Function CPre is monotonic over the complete
lattice (2FO, ⊆), and so it has a greatest fixed point denoted by CPre∗.

Theorem. The set of states from which Player O (the system) has a winning 
strategy in G(A,K) is equal to CPre∗.

• By Theorem for the Reduction to a Safety Game, system has a winning 
strategy in G(A,K) iff the initial state F0 ∈ CPre*.
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Properties of the controllable predecessor - 2

• F can be partially ordered by F ≼ F´ iff ∀q, F(q) ≤ F´(q).
• If system wins from F´, it can also win from F.

• CPre() preserves downward-closed sets.
• A set S ⊆ F is closed for ≼, if ∀F ∈ S ・∀F´ ≼ F ・F´ ∈ S.
• For all closed sets S ⊆ F, the closure of S denoted by ↓S, is equal to S.

• A set S ⊆ F is an antichain if all elements of S are incomparable for ≼.

• The set of maximal elements of S is an antichain, S = {F ∈ S | ∄F´ ∈ S・

F´ ≠ F ∧ F ≼ F}.

• For Acacia+ antichains are a compact and efficient representation to 
manipulate closed sets in F.

• Each (downward) set of the fixpoint computation is represented by its 
maximal elements.
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Symbolic Fixpoint Computation
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Symbolic Fixpoint Computation
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Symbolic Fixpoint Computation
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Symbolic Fixpoint Computation
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Symbolic Fixpoint Computation
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maximal 
elements of 
the antichain



Incremental realizability checking

• For checking the existence of a winning strategy for Player O in the 
safety game, the following property of UKCWs: 

for all K1, K2・ 0 ≤ K1 ≤ K2・ Luc,K1(A) ⊆ Luc,K2(A) ⊆ Luc(A).
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Not reasonable to test for unrealizable specifications. Need to reach the
upper bound for K.



Unrealizability Checking

• As a consequence of the determinacy theorem for Borel games:

• φ is unrealizable for the System iff ¬φ is realizable for the
Environment.

• The previous algorithm is adapted to test unrealizability.

• Realizability by Player O of φ is checked, and in parallel realizability by 
Player I of ¬φ, incrementing the value of K. 

• When one of the two processes stops, it is known if φ is realizable or 
not.

• In practice, realizability or unrealizability are obtained for small values 
of K.
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Synthesis of winning strategies

• If a formula φ is realizable, extract from the greatest fixpoint computation
a Moore machine that realizes it.

• Let 𝛱I ⊆ FI ∩ safe and 𝛱O ⊆ FO ∩ safe be the two sets obtained by the 
greatest fixpoint computation.

• PreO(𝛱I) = 𝛱O , PreI (𝛱O) = 𝛱I  --- 𝛱I  and 𝛱O  are downward-closed.

• By definition of PreO for all F ∈ 𝛱O , ∃ σF ∈ Σ such that 

succ(F, σF) ∈ 𝛱I , and this σF can be computed.

• A Moore machine can be extracted:
• set of states is 𝛱O ,

• the output function maps any state F ∈ 𝛱O to σF ,
• the transition function maps F to a partially-ordered state F´ according to the

succ operator,
• and the initial state F0 is a state partially-ordered with F.
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Example of Moore machine synthesis
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• tbUCW for Fq → (pUq)
• Start with the safe state in the game for 

the system, denoted by
F1 = (1 → 1, 4 → 1, 6 → 1, 8 → 1).
• Then, for the system predecessor (Env.), 
F2 := (2 → 1, 3 → 1, 5 → 0, 7 → 0, 9 → 1)
• Then for the controlled (System) 

predecessor
CPre = (1 → 1, 4 → 0, 6 → 0, 8 → 1)
• At end of computation, the fixpoint is:
F := (1 → 1, 4 → −1, 6 →−1, 8 → 1)



Forward algorithm for solving games

• In Acacia+ also a forward algorithm can be applied to solve games.

• Compared to the backward algorithm, the forward algorithm has the
advantage that it computes only the winning positions F (for the System) 
which are reachable from the initial position.

• But it can compute only one winning strategy.

• The algorithm explores the positions of the game and once a position is 
known to be losing, this information is back propagated to the 
predecessors.

• A position of Player System is losing iff it has no successors or all its 
successors are losing.

• A position of Player Env. is losing iff one of its successors is losing.
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Forward algorithm – Sketch (1)

• At each step, maintain an under-approximation Losing of the set of 
losing positions.

• A waiting-list Waiting for reachable position exploration and re-
evaluation of positions is used.

• An edge is put in the waiting-list if it is the first time it has been
reached, or the status of its target position has changed.

• If a position is known that is losing, this is back-propagated to all its
predecessors.

• A set Passed records the visited positions.

• a set Depend stores the edges (s, s´) which need to be re-evaluated 
when the value of s´ changes.
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Forward algorithm – Sketch (2)

• At each step, pick an edge e = (s, s´) in the waiting-list.

• If its target s´ has never been visited, check if this target is losing
• When it has no successors.

• If losing, add e in the waiting-list for re-evaluation.
• Back propagate the information on s´.

• Otherwise add all the successors of s´ in the waiting-list for re-
evaluation.

• If s´ has already been visited, then compute the value of s. 

• If s is losing, this information is back propagated to the positions 
whose safeness depends on s.
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Compositional safety games and LTL synthesis

• Acacia+ implements a compositional approach for synthesis of large 
conjunctions of LTL formulas.

• Realistic systems cannot be specified by just a couple of simple LTL 
formulae.

• A scalable approach is very beneficial!
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Overview of compositional algorithms

• Two compositional algorithms for LTL formulas of the form

φ = φ1 ∧・・・∧ φn are implemented in Acacia+.

• Backward algorithm: At each stage of the parenthesizing, the antichains Wi

of the subformulae φi are computed backward and the antichain of the 
formula φ itself is also computed backward from the Wi’s.
• All winning strategies for φ are computed and compactly represented by the 

final antichain.

• Forward algorithm: At each stage of the parenthesizing, the antichains Wi

of the subformulae φi are computed backward, except at the last stage 
where a forward algorithm seeks for one winning strategy by exploring the 
game arena on the fly in a forward fashion.
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Compositional safety games

• Compositional reasoning on safety games is supported by the
existence of a most permissive strategy, a master plan.

• The master plan of System can be interpreted as a compact 
representation of all the winning strategies of System against the 
Environment.
• It contains all the moves that System can play in a state s in order to win the 

safety game.

• The master plan associated with a game can be computed in a 
backward fashion by using variants of the controllable operator CPre
and sequence of positions W.

14.05.2019 59



Composition of safety games

• Let Gi , i ∈ {1, . . . , n}, be n safety games Gi = (Si
1, Si2, Γi

1, Δi
1, Δi

2) defined on 
the same sets of moves, Moves = Moves1 ⊎ Moves2.

• Their product is the safety game G⊗ = (S⊗1 , S⊗2 , Γ⊗1 , Δ⊗
1 , Δ⊗

2) over the
product of the state spaces of the players, the intersection (common) 
winning strategies of the System and the transitions conforming to the
winning strategy of System or to the moves of the Environment. 
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Backward compositional solving of G⊗

• First, compute locally the master plans of the components.

• Then compose the local master plans and apply one time the CPre
operator to this composition to compute a function that contains 
information about the one-step inconsistencies between local master
plans.

• Project back on the local components the information gained by the
function , and iterate.
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Forward compositional solving of G⊗

• Interested in computing a master plan only for the winning and reachable positions, 
common for all sub-games. Example:
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Compositional LTL synthesis

• When a formula is given as a conjunction of subformulas i.e., 

ψ = φ1 ∧ φ2 ∧ · · · ∧ φn the safety game associated with this formula can be
defined compositionally.

• For each subformula φi the corresponding tbUKCW Aφi on the alphabet of 
ψ is constructed and also their associated safety games G(φi,K).
• The notion of product is used at the level of turn-based automata.
• Executing the A1⊗A2 on a word w is equivalent to execute both A1 and A2 on 

this word.

• The game G(ψ,K) for the conjunction ψ is isomorphic to the game
composition.

• The game is then solved compositionally by first computing the local
master plans to finally produce a compact (global) Moore machine, if it 
exists.
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About the full exam for this part of the course

• Possible questions for the final exam (closed book) for this part of the 
course will be around these slides.
• With focus on Acacia+ background and preliminaries.

• Need to read the papers.

• If a question will be around the proofs of the theorems/lemmas, only abstract 
elaboration/sketch of proof will be enough for answering.

• Possibly a question regarding the Safra-based old approach.
• The elaboration is found in the two Acacia+ papers.

• No need to learn the details from the original paper. 

• Possibly a question will be about improving (filling up) some (not complex) 
spec in LTL to make it realizable.
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About the open book test for this part

• Most of the questions will be around LTL.
• Formalising some requirements with LTL.

• Translating LTL to plain English.

• Correspondence between LTL formula and automaton.

• ...

• Possibly a question will be about improving (filling up) some (not complex) 
spec in LTL to make it realizable.
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