
Some clues how to find invariants: 

 

According to derived While rule we get 3 verification conditions:  

                            ˫  P  R         ˫ {R  S} C {R}        ˫ R  S  Q 

                                                    ˫ {P}  WHILE  S  DO C  {Q} 

 

(where P- precondition, R- invariant, S - while condition, C- while body, Q- post-condition): 

1. by assumption ˫ P  R, formula R cannot be weaker than P i.e., possibly P includes  in 

its conjuncts propositions of R, i.e., R must include at most those variables that occur 

in P. 

2. by assumption ˫ R /\ ⏋S  Q, R includes conjuncts that strengthen the condition ⏋S 

enough to imply Q, i.e.,  R must include at least all those variables of Q that do not 

occur in S. 

3. by assumption ˫ {R /\ S} C {R}  execution of C does not influence the validity of R, i.e., 

R is a "sort of balance equation" on variables and constants of C. Also  variables of 

the rest of whole program can be referred in R as  constants for C. 

4. since for provability of (1)  weak as much as possible R and for provability of (2) 

strong as much as possible R is preferable then (1) and (2) together bound the set of 

conjuncts of R from below and from above, so that  P  R  and (R /\ ⏋S)  Q. 

5. Analyzing the effect of C, one can find variables monotonously increasing and 

decreasing when executing C, e.g.,  

 

(5.1) let E1 and E2 be expressions (defined using variables of C) increasing when C is 

executed iteratively. Then R may have a form of equation   f1(E1) = f2(E2) where f1 and 

f2 may be just simple multiplications with some constants to balance E1 and E2.  

(5.2) let E1 be an expressions increasing and E2 expression decreasing when C is 

executed iteratively and f3 describing the final result of iteration. Then R may have 

the form f1(E1) ¤ f2(E2) = f3 where ¤ is multiplication or adding. 

 

To practice with finding invariants, it is recommendable to write while-programs that 

compute factorial, Fibonacci numbers, and multiplication using only summation, also 

programs of array operations will do. 
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Examples of invariants: 

Example 1: 

 {M1} 
    BEGIN 

  X:=0; 
FOR N:=1 UNTIL  M DO  
    X:=X+N 

    END 

{X=(M(M+1)) DIV 2} 

 

Invariant:  

 

 

Example 2: 

{T} 
BEGIN 

R:=X; 
Q:=0; 

WHILE Y  R DO 
    BEGIN  
        R := R-Y; Q:= Q+1 
    END 

END 

{ X = R+YQ /\ R < Y } 
 

Invariant:   X = Y  Q + R 

 

R   X = N * (N - 1) DIV 2 /\ N  M+1 




