
Some clues how to find invariants:

According to derived While rule we get 3 verification conditions:

 ˫ P  R ˫ {R  S} C {R} ˫ R  S  Q

 ˫ {P} WHILE S DO C {Q}

(where P- precondition, R- invariant, S - while condition, C- while body, Q- post-condition):

1. by assumption ˫ P  R, formula R cannot be weaker than P i.e., possibly P includes in

its conjuncts propositions of R, i.e., R must include at most those variables that occur

in P.

2. by assumption ˫ R /\ ⏋S  Q, R includes conjuncts that strengthen the condition ⏋S

enough to imply Q, i.e., R must include at least all those variables of Q that do not

occur in S.

3. by assumption ˫ {R /\ S} C {R} execution of C does not influence the validity of R, i.e.,

R is a "sort of balance equation" on variables and constants of C. Also variables of

the rest of whole program can be referred in R as constants for C.

4. since for provability of (1) weak as much as possible R and for provability of (2)

strong as much as possible R is preferable then (1) and (2) together bound the set of

conjuncts of R from below and from above, so that P  R and (R /\ ⏋S)  Q.

5. Analyzing the effect of C, one can find variables monotonously increasing and

decreasing when executing C, e.g.,

(5.1) let E1 and E2 be expressions (defined using variables of C) increasing when C is

executed iteratively. Then R may have a form of equation f1(E1) = f2(E2) where f1 and

f2 may be just simple multiplications with some constants to balance E1 and E2.

(5.2) let E1 be an expressions increasing and E2 expression decreasing when C is

executed iteratively and f3 describing the final result of iteration. Then R may have

the form f1(E1) ¤ f2(E2) = f3 where ¤ is multiplication or adding.

To practice with finding invariants, it is recommendable to write while-programs that

compute factorial, Fibonacci numbers, and multiplication using only summation, also

programs of array operations will do.

Jüri
Highlight

Jüri
Typewritten Text
or

Jüri
Cross-Out

Jüri
Inserted Text
or

Examples of invariants:

Example 1:

 {M1}
 BEGIN

 X:=0;
FOR N:=1 UNTIL M DO
 X:=X+N

 END

{X=(M(M+1)) DIV 2}

Invariant:

Example 2:

{T}
BEGIN

R:=X;
Q:=0;

WHILE Y  R DO
 BEGIN
 R := R-Y; Q:= Q+1
 END

END

{ X = R+YQ /\ R < Y }

Invariant: X = Y  Q + R

R  X = N * (N - 1) DIV 2 /\ N  M+1

