
Lecture 2
Module I: Model Checking

Topic: State transition systems

Jüri Vain
03.02.2022

1ITI8531_Lecture_2_22_transition_systems

Model Checking (MC) problem: intuition

• Correct design means that the system under development satisfies
design requirements.

• The requirements are formalized as correctness properties system
must satisfy.

• Correctness properties specify what behaviours/features are correct
and what are not in the system.

• To apply rigorous verification methods we need formalization of:
• system description

• correctness properties

• System is described formally with its model

• Properties are specified formally with logic assertions

2ITI8531_Lecture_2_22_transition_systems

Advantages of MC?

• Model checkers do not require full execution of programs, they run on
program’s abstract representation.

• MC is fully automatic

• Large number of tools (Spin, Java Pathfinder, …), see
https://en.wikipedia.org/wiki/List_of_model_checking_tools

• MC is good for bug-hunting because the “debugger” is native component of
each model checker.

• Traceability – the diagnostic trace (counter example) generated by model
checker helps in analyzing and detecting the sources of design bugs.

3ITI8531_Lecture_2_22_transition_systems

Model Checking (formally)

• Satisfaction relation (symbolically):

M |=  ?

“Does model M satisfy logic assertion  ?”

• Behavioural property is expressed as temporal logic formula  .

• Model M is a state-transition system that formalizes the behavior of the
system to be verified.

Procedural definition:

• Model checking is a state space exploration method to determine if the
reachable states of model M satisfy the property .

4ITI8531_Lecture_2_22_transition_systems

Modelling

How do we get the models?

1. Formal modelling

• is a process of abstraction, i.e.,

• it makes verification possible by retaining the part of the system that is
relevant to properties of interest

• should not discard too much so that the result lacks certainty, or

• should not discard too little to avoid too complex verification tasks.

2. Modelling techniques:

• “manual“ construction by applying model patterns, abstraction, domain
knowledge,…

• automatic modelling:

• by monitoring states and events, and applying ML methods on logs

• model extraction from program code by parsing

• extraction from (structured) natural language patterns

5ITI8531_Lecture_2_22_transition_systems

How to choose the modelling formalism?

• Hundreds of modelling languages, e.g. UML, SML, B, Z, …

• We focus on those which semantic bases is state-transition systems (STS).

• STS

• are generally relevant for model checking;

• represent finite set of states and transitions between states;

• allow abstraction, i.e. symbolic encodings (logic formulae) specify
abstract properties and relations instead of explicit states and transitions

Examples

• push-down automata/systems are possible;

• also source code can be used as model, e.g., Pathfinder uses Java code;

6ITI8531_Lecture_2_22_transition_systems

• State

• A state is a “snapshot” of the system variables’ valuation

• Example:

Let x, y, z be state variables, then valuation x=2.4, y= 3.14, z=10 is one of
its possible states.

Graphically:

• Transition represents relation between states.

It can be an abstraction of

• C program statement, e.g. x++ transforming state x=12 to a new state
where x=13;

• an electronic circuit that transforms a signal;

• or just an arrow, the source and destination states of which matter.

Modelling notions STS

7

state

transition

ITI8531_Lecture_2_22_transition_systems

Atomicity of state transitions

• Execution of a transition STS is assumed to be atomic, i.e. uninterruptable
once started.

• Atomicity of transitions determines the abstraction level of the model

• too big state changing steps may miss intermediate states that are
important;

• too small steps may blow up the model unnecessarily.

• Atomicity of transitions must also consider concurrency, i.e.

• possible interleavings of transitions and interactions of parallel
transitions must be explicit in the models of paralleel systems.

8ITI8531_Lecture_2_22_transition_systems

Kripke Structure (KS)

KS is one of the classical State Transition Systems modelling formalisms

KS is a 4-tuple (S, S0, L, R) over a set of atomic propositions (AP) where

• S set of symbolic states (a symbolic state encodes a set of explicit states)

• S0 is an initial state

• L is a labeling function: S  2AP

• R is the transition relation: R  S x S

Note:

L specifies conditions the explicit states have to satisfy in the symbolic state.

9ITI8531_Lecture_2_22_transition_systems

Example of KS

Assume the state vector consists of 2 state variables x and y

• Initially in s0 x = 1 and y = 1

• S = {s0, s1}

• S0 = {s0}

• R = {(s0, s1), (s1, s0)}

• L(s0) = {x=1, y=1}

• L(s1) = {x=0, y=1}

10

s0 s1

x:= (x+y) mod 2

x:= (x+y) mod 2

ITI8531_Lecture_2_22_transition_systems

Modeling Reactive Systems

• Reactive system (RS) models are STS that:

• do not terminate (in general);

• interact repeatedly with their environment.

• Consider KS as a simple modeling language for RS-s

• though KS is just one way of modeling RS.

11ITI8531_Lecture_2_22_transition_systems

Properties: some examples of RS properties
to be verified

• Race condition - the output depends on the order of uncontrollable events.
It becomes a bug when events do not happen in the order the programmer
has intended, e.g.

• in file systems, programs may be conflicting in their attempts to
modify the file, which could result in data corruption;

• in networking, two users of different servers at different ends of the
network try to start the same-named channel at the same time.

• Deadlock – all processes are infinitely waiting after each other for releasing
the resources. Generally undecidable, practical decidability is granted only
for finite state systems.

• Starvation - some processes are blocked from some resources (also called,
processes conspiracy against others).

• etc.

12ITI8531_Lecture_2_22_transition_systems

Modeling Concurrent Programs with KS

How to construct a KS of a (parallel) program?

Approach by Z.Manna, A.Pnueli:

1. Abstract the sequential components of the program as logic relations.

2. Compose the logic relations for the full concurrent program.

3. Compute a Kripke structure from these logic relations.

Look how it works on an example?

13ITI8531_Lecture_2_22_transition_systems

Step 1: abstracting sequential components
Step 1.1: Describing abstract states

• For abstracting states we use program variables and 1st order predicate
logic (FOL)

• In the logic language we have symbols for

• logic connectives: true, false, ¬, , , , , 

• arithmetic predicates: =, >, <,

• other interpreted predicates and functions:

• even(x)

• odd(x)

• prime(x)

…

• NB! FOL does not have predicate variables

14ITI8531_Lecture_2_22_transition_systems

Example of state abstraction steps

15

x=0;

y=1;

z=2;

y=1;

z=2;

y < z

z is

prime

Defining
“observables“

Express the
relation on values

that constitute
same symbolic

state

Choose only
the variables of

interest

ITI8531_Lecture_2_22_transition_systems

Explicit state Symbolic stateabstraction

Representing States

• Valuation of a state

• is a mapping: V  V from observable state variables V to their
value domains V.

• Symbolic state represents not a single variable valuation but a set of
them (explicit states)

• Instead of enumerating explicit states in a symbolic state we use a
constraint that describes the set of explicit values.

• This constraint is a FOL formula.

• Example: Si  (x =1)  (y > 2)

Here all explicit states where x=1 and y > 2 constitute one symbolic
state.

16ITI8531_Lecture_2_22_transition_systems

Step 1.2: Representing a transition

• A KS transition abstracts e.g. an execution of a program command

• We distinguish two sets of variables values:

V and V’ for variable valuation in pre- and post-state of the transition,
respectively

• Transition relation is relation between V and V’ expressable as

• a set of pairs of states

• a boolean equation on V, V ’

• Example:

• Relation x’ = x+1 describes the effect of program statement x:=x+1

V V’

pre-state transition post-state

rel(V, V’)

17ITI8531_Lecture_2_22_transition_systems

Step 3: From Logic Relations to Kripke
Structure (sequential systems case)

• Assume we have now FOL formulas describing states and state transitions of
a sequential programm.

• S - (explicit) statespace is a set of all valuations for V, e.g.

if V= {v1, …vn} then S = dom(v1)  ...  dom(vn)

• S0 is the set of all valuations that satisfy S0 (a logic formula)

• If s and s’ are two states, s.t. (s, s’)  R(s, s’) then the pair (s, s’) is a
transition in KS;

• L is defined so that L(s) is the subset of all atomic propositions true in s.

18ITI8531_Lecture_2_22_transition_systems

Example

Explicit state KS:
• State vector - (x, y)

• S0 = {(1,1)}

• L(1,1) = {x=1, y=1}

• L(0,1) = {x=0, y=1}

• R = {((1,1), (0,1)), ((0,1),(1,1))}

• Symbolic state KS:
• S0 x = 1  y = 1

• R  x’= (x+y) mod 2

• S = B  B, where B = {0,1}

19

(1,1) (0,1)

x’:= (x+y) mod 2

ITI8531_Lecture_2_22_transition_systems

x’:= (x+y) mod 2

Step 2: Abstracting parallel programs

• A parallel program consists of sequential processes

• Sequential processes

• are composed of commands, e.g. skip,:=,if,while, …

• are synchronized with primitives, e.g. wait, lock and unlock

• may share variables

• In untimed models there is no assumption about the speed and
execution order of processes (maximum concurrency).

• Program commands are labeled with labels l1, … , ln

• We use C(l1, P, l2) to denote the logic relation of the state transition
implemented by programm P that starts in state l1 and terminates in
state l2.

20ITI8531_Lecture_2_22_transition_systems

Step 2.1: Constructing transition relation of
processes? (1)

• Base case: atomic commands, e.g. skip and “:=“ :

• skip has no effect on data variables

• assignment: x := e

Let C describe relation between valuations of variables before and
after executing program P (label l1 denotes pre-state and l2 post-
state of P)

If P ≡ x:=e % includes only assignment

then

C(l1, x:=e, l2)  pc = l1 pc’=l2  x’= e  same(V \{x})

where

same(Y) means y’= y, for all y  Y.

pc - program counter

21ITI8531_Lecture_2_22_transition_systems

set difference

How to compute abstract transition relation
for sequential components? (2)

• Sequential composition of programs P1 and P2

C(l0, P1 ; l: P2, l1) = C(l0, P1, l) ∨ C(l, P2, l1)

• If-command (l1 and l2 label then and else brances respectively)

C(l, if b then l1: P1 else l2: P2 end if, l’) =

pc = l  pc’= l1  b  same(V) ∨
pc = l  pc’= l2  ¬ b  same(V) ∨

C(l1, P1, l’) ∨
C(l2, P2, l’)

22

C
o

n
d

itio
n

al
p

art
B

o
d

y p
art

ITI8531_Lecture_2_22_transition_systems

How to compute logic relations for paralleel
processes?

23

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

• Notations: NC and CR label non-critical and critical region of the
processes.

• Abstraction process:

1. identify variables, including program counters pc0 and pc1;

2. compute the set of states and set of initial states;
3. compute transitions;
4. aggregate processes.

Example: concurrent while-loops sharing a variable turn

ITI8531_Lecture_2_22_transition_systems

Example (continued I)

24

1. Identify variables, including program counters:

• V = { pc_0, pc_1, turn}

• dom (pc_0) = { L0, NC0, CR0, L0’}

• dom(turn)= { 0, 1}

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

ITI8531_Lecture_2_22_transition_systems

Example (continued II)

2. Compute the set of states and set of initial states

State vector: (pc0, pc1, turn)

State space: S = {(L0, L1, 1), (L0, L1, 0), (L0, NC1, 0), (L0, NC1, 1), …}

Inital states: S0 = {(L0, L1, 0), (L0, L1, 1)}

25

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

ITI8531_Lecture_2_22_transition_systems

Example (continued III)

L1: while (true) do

NC1: wait (turn
=1);

CR1: turn := 0;

end while

L1’

26

3. Compute transition relations for processes separately

4. Concatenate state vectors and compose transition relations together:
• For global program counter dom(pc) = {m, m’, }
•  represents that one of the local processes is taking effect, which

one we don’t care.

L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

m: cobegin

m’: coend

ITI8531_Lecture_2_22_transition_systems

Example (continued IV)

• Transition relations of the composition:
• e.g. move of the process P0

C(L0, P0, L0’)  turn’= turn+1  same(V \ V0)  same(PC \ PC0)

27

L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while(true) do

NC1:wait(turn=1);

CR1: turn := 0;

end while

L1’

m: cobegin

m’: coend

ITI8531_Lecture_2_22_transition_systems

Summary

• We touched the concept of MC at very high level:
• MC is an automatic procedure that verifies temporal and state properties

of systems by exploring their models state space.
• MC requires input:

• a state transition system
• a temporal property

• State transition system – Kripke structure (KS):
• KS structure is our (teaching) modelling language
• KS models reactive systems

• An example demonstrated how a concurrent program is translated to KS:
• Step 1: Concurrent program is translated to logic relations
• Srep 2: Logic relations are translated to KS (topic of next lecture).

28ITI8531_Lecture_2_22_transition_systems

Next lecture

• Temporal logics for property description
• CTL*, CTL and LTL

• Their semantics

• CTL model checking algorithms for Kripke structure

29ITI8531_Lecture_2_22_transition_systems

Exercise

• Given a KS with labeling function L on boolean variables p, q, r

• Specify transition relation between states symbolically:

30

L(s0) = {¬ p, ¬ q, ¬ r}

L(s1) = {¬ p, ¬ q, r}

L(s2) = {¬ p, q, ¬ r}

L(s3) = {¬ p, q, r}

L(s4) = {p, ¬ q, ¬ r}

L(s5) = {p, ¬ q, r}

L(s6) = {p, q, ¬ r}

L(s7) = {p, q, r}

s7 s0 s3

s5 s4s6

s1 s2

ITI8531_Lecture_2_22_transition_systems

Transition relation R ≡ \/i Ri where …, R0,3 ≡ same(p)  ¬ q  ¬ r  q’ r’

