TALLINN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SOFTWARE SCIENCE

Assignment in subject “Software Assurance” (ITI8610)
Subsystem to be analyzed: smart home climate control (scenario 8 - smart home
system)

Course Work on Contracts

Authors, group ID
Aleksei Gvozdev
Aleksei NetSunajev
Anna Krajuskina
Alex Neil

Natalya Berezovski
Viktoria Tisler

Group ID IAPM
Date: 07.01.2018

TALLINN 2017

1. Architectural Entities

2. Communication Diagrams

3. System quality attributes

4. JML Contract Assertions and their Consistency
5. Multi-view contracts

References

0 o0 O W

10
11

1. Architectural Entities

For the project the smart home system is selected. The system may get very sophisticated
and for that reason we focus on a very small part of the smart home. We describe light,
humidity and temperature subsystems in the project shortly .

The following architectural entities:
1. Controllers: receive signals from sensors and environment and adjust behaviour of
the devices

a. humidity controller
b. light controller
c. temperature controller

2. Sensor: elements for retrieving and interpreting environmental data
a. humidity sensor
b. light sensor
c. temperature sensor

3. Devices: apply changes to environment
a. air conditioner
b. dehumidifier

c. heater

d. humidifier

e. lamp
4. Environment that surrounds the smart home
5. User

Usarintsrfacs

Light3ansor

LightControdisr

L

Envircnmsant

FmartHoms Usar

Cnn.tma}an\

-

Husmibdiity Sane0r

"‘\._._‘_‘_\

HumidityControlisr

-

=

TeampsraturaControdisr

Tampsratune 3ansor

Humddifisr

DahumibdiTier

Diagram 1. Architectural diagram of the whole system with all entities present

2. Communication Diagrams

Below are provided communication diagrams that describe 3 processes:
e humidity control;
e temperature control;

e lightc

ontrol.

Haater

1: changeHumidity(targetHumidity) —P» Wsaririerfacd

SmartHome User

Humidity Sensor

1.1: changeHumidity(tangetHumidity} ¢

ControlPanel

1.Z: change(targetHumidity) #

44— 1.3 getHumidity()

HumidityControllen

1.4: getCurrentHumidity(): int ‘l’

1.6 onfofii) —P

1.8 onfofi) —P»

1.5: onjoffi() ¢

Environment:
Environment

1.7: onfoffi() ‘L
R_'_“—‘—-——_.___ Humidifier

4— 1.9 setCunentHumidity(int)

Dehumidifier

Diagram 2. Communication diagram of the humidity controlling part

4 10: setCurrentHumidity(int)

1: changeTemperaturs{targstTemp) —

SmartHome User

Temperature Sensor

Userinterface

v

1.1: changsTemperaturs{targetTemp)

ControlPanel

1.2: change{targetTemp) ¢

4— 1.5 getTemperstur=()

1.12: getCumentTemp(): int ‘L

Envircnment:
Envircnment

¢ 1.9: getCumentTemp(): int

1.7: setCumentTemp{int)

o— 1.8 “getTemperaturs()

TemperatureController 1.8 onfeff) —J»

1.11: onfoff) —P»

e

3 £EM
1.3: ondoff() ¢

¢ 1.10: onfoff{)

4— 1.4 s=tCurrentTemplint)

Heater

Diagram 3. Communication diagram of the temperature controlling part

AirConditioner

1: increaselighting(targetLighting) —p L

2: decreas=lighting(targetLighting) —»
SmartHome User

-

1.1: increaselighting{targetLighting)

¢ 2.1: decreaselightingtargetLighting)

ControlPanel

1.2: incresss{targetlighting)

1.3 aetlichtingl} 1.5 }
LightSensor 44— 1.3 getlighting]) LighiConEules onl) —P o
#— 2.3 getlightingl) 25 off) —f
1.4: getCurrentlight{): int 1.8: setCurrantLightfint) ‘/
~4 2.8 setCumentlight{int)
2.4: getCurrentLight{): int &

Envirgnment:
Environment

Diagram 4. Communication diagram of the light controlling part

3. System quality attributes

We consider following quality attributes that were defined for the system:

a) Security - prevents environmental parameters from taking extreme values. For
instance an option of increasing temperature over a certain threshold should be
eliminated.

b) Functional correctness - ensures that code works as expected.

Below is provided an example of a JML contracts for security quality attribute.

//@ assignable lowerValue;
//@ requires goalValue >= 20 && goalValue <= 80;
//@ ensures lowerValue == goalValue - 1;
void setLowerValue() {
lowerValue = goalValue - 1;

Functional correctness assertions:
//@ assignable currentLight;
//@ requires currentLight - increment >= MIN_POWER;
//@ ensures (currentLight - increment >= MIN_POWER) && currentLight ==
\old(currentLight) - increment;
public void decreaseLight() {
if (currentLight - increment >= MIN_POWER){
currentLight = currentLight - increment;
Environment.getlnstance().setCurrentLight(currentLight);

4. JML Contract Assertions and their Consistency

We chose to implement the JML contracts using OpenJML and OpenJML plugin for Eclipse.
SMT solver used to verify the contract assertions is the Key Tool plugin for Eclipse IDE. The
reason why this tool was chosen lies in the technical issues that our team members were
facing while setting up the infrastructure for the project. This combination worked out for all
team members while people were having troubles setting up Z3 or some other solvers on
various operating systems. Solvers were performing differently during setup on various
operating systems and that caused troubles in verifying assertions. Some proofs were also
checked using Z3 solver on a Windows machine.

Below are some examples from the code, where JML was used. It is important to point out
that not all Java features may be used by Key Software for verification, thus our team has
decided to simplify code in order to avoid verification failure. OpenJML and Key solver does
not support multi-threading, library methods, Java 8 and many other features. These
features of Java were abandoned for the sake of the ability of verifying contracts formally.

LightController.java:
//@ requires lightSensor != null;
//@ ensures \result >= 20 && \result <= 100;

int getEnvironmentalData() {
return lightSensor.getEnvironmentalData();

HumiditySensor.java:
//@ assignable currentValue;

//@ ensures \result >= 20 & \result <= 80;

public int getEnvironmentalData() {
currentValue = Environment.getinstance().getCurrentHumidity();
return currentValue;

b

Controller.java:
protected /*@ spec_public @*/ boolean runThread;

HumidityController.java:
//@ diverges true;

//@ assignable \nothing;

void stopDevices() {
stopHumidifier();
stopDehumidifier();

To complete proofs the project was converted to Key project in Eclipse. This results
in automatic check of JML assertions by Key tool. The project structure is amended
by proofs section. Figure 1 shows an example from the project structure obtained
with Key tool. Figure 2 shows an example of a proof completion using Z3 solver.

4 {3 proofs
4 [= controllers

4 [= Controller.java
‘;_?D controllers_Controller[controllers_Controller__Controller()}
ED controllers_Controller[controllers_Controller_run()]_JML_
ED controllers_Controller[controllers_Controller__setGoalValu
ED controllers_Controller[controllers_Caontroller__startCantrol
ﬁD contrellers_Controller[controllers_Controller__stopControl

Figure 1. Example of a proof completion from the project structure.

4 Static Checks for: ITIB610
[» controllers
[devices
4 environment

4 environment.Environment

[VALID] getCurrentTemp(]) [0,076 23_4_3]

Figure 2. Example of a proof completion using Z3 solver.

5. Multi-view contracts

Following contract is an example of a multi-view contract where 2 quality attributes are
combined - first is security and the second is functional correctness. Our system is extremely
simplified due to JML supported features limitations of Key Tool and for this reason we
present only a single example.

//@ assignable lowerValue;
//@ requires goalValue >= 20 && goalValue <= 80;
//@ also
//@ ensures lowerValue == goalValue - 1;
void setLowerValue() {
lowerValue = goalValue - 1;

References

Key Tool: https://www.key-project.org/
OpenJML: http://openjml.org/

10

https://www.key-project.org/
http://openjml.org/

