

TALLINN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SOFTWARE SCIENCE

Assignment in subject “Software Assurance” (ITI8610)
Subsystem to be analyzed: ​smart home climate control (scenario 8 - smart home

system)
Course Work on Contracts

Authors, group ID
Aleksei Gvozdev

Aleksei Netšunajev
Anna Krajuškina

Alex Neil
Natalya Berezovski

Viktoria Tisler

Group ID ​IAPM
Date: 07.01.2018

TALLINN 2017

1. Architectural Entities 3

2. Communication Diagrams 5

3. System quality attributes 8

4. JML Contract Assertions and their Consistency 8

5. Multi-view contracts 10

References 11

2

1. Architectural Entities
For the project the smart home system is selected. The system may get very sophisticated
and for that reason we focus on a very small part of the smart home. We describe light,
humidity and temperature subsystems in the project shortly .

The following architectural entities:

1. Controllers: receive signals from sensors and environment and adjust behaviour of
the devices

a. humidity controller
b. light controller
c. temperature controller

2. Sensor: elements for retrieving and interpreting environmental data
a. humidity sensor
b. light sensor
c. temperature sensor

3. Devices: apply changes to environment
a. air conditioner
b. dehumidifier
c. heater
d. humidifier
e. lamp

4. Environment that surrounds the smart home
5. User

3

Diagram 1. Architectural diagram of the whole system with all entities present

2. Communication Diagrams
Below are provided communication diagrams that describe 3 processes:

● humidity control;
● temperature control;
● light control.

4

Diagram 2. Communication diagram of the humidity controlling part

5

Diagram 3. Communication diagram of the temperature controlling part

6

Diagram 4. Communication diagram of the light controlling part

3. System quality attributes
We consider following quality attributes that were defined for the system:

a) Security - prevents environmental parameters from taking extreme values. For
instance an option of increasing temperature over a certain threshold should be
eliminated.

b) Functional correctness - ensures that code works as expected.

Below is provided an example of a JML contracts for security quality attribute.

 ​//@ assignable lowerValue;

 ​//@ requires goalValue >= 20 && goalValue <= 80;

 ​//@ ensures lowerValue == goalValue - 1;

 ​void​ ​setLowerValue​() {

 lowerValue = goalValue - ​1​;

 }

7

Functional correctness assertions:
 ​//@ assignable currentLight;

 ​//@ requires currentLight - increment >= MIN_POWER;

 ​//@ ensures (currentLight - increment >= MIN_POWER) && currentLight ==

\old(currentLight) - increment;

 ​public​ ​void​ ​decreaseLight​() {

 ​if​ (currentLight - increment >= ​MIN_POWER​){

 currentLight = currentLight - increment;

 ​Environment​.​getInstance​().​setCurrentLight​(currentLight);

 }

 }

4. JML Contract Assertions and their Consistency
We chose to implement the JML contracts using OpenJML and OpenJML plugin for Eclipse.
SMT solver used to verify the contract assertions is the Key Tool plugin for Eclipse IDE. The
reason why this tool was chosen lies in the technical issues that our team members were
facing while setting up the infrastructure for the project. This combination worked out for all
team members while people were having troubles setting up Z3 or some other solvers on
various operating systems. Solvers were performing differently during setup on various
operating systems and that caused troubles in verifying assertions. Some proofs were also
checked using Z3 solver on a Windows machine.

Below are some examples from the code, where JML was used. It is important to point out
that not all Java features may be used by Key Software for verification, thus our team has
decided to simplify code in order to avoid verification failure. OpenJML and Key solver does
not support multi-threading, library methods, Java 8 and many other features. These
features of Java were abandoned for the sake of the ability of verifying contracts formally.

LightController.java:
 ​//@ requires lightSensor != null;

 ​//@ ensures \result >= 20 && \result <= 100;

 ​int​ ​getEnvironmentalData​() {

 ​return​ ​lightSensor​.​getEnvironmentalData​();

 }

HumiditySensor.java:
 ​//@ assignable currentValue;

 ​//@ ensures \result >= 20 & \result <= 80;

 ​public​ ​int​ ​getEnvironmentalData​() {

 currentValue = ​Environment​.​getInstance​().​getCurrentHumidity​();

 ​return​ currentValue;

8

 }

Controller.java:
protected ​/*@ spec_public @*/​ ​boolean​ ​runThread​;

HumidityController.java:
 ​//@ diverges true;

 ​//@ assignable \nothing;

 ​void​ ​stopDevices​() {

 ​stopHumidifier​();

 ​stopDehumidifier​();

 }

To complete proofs the project was converted to Key project in Eclipse. This results

in automatic check of JML assertions by Key tool. The project structure is amended

by ​proofs​ section. Figure 1 shows an example from the project structure obtained

with Key tool. Figure 2 shows an example of a proof completion using Z3 solver.

Figure 1. Example of a proof completion from the project structure.

Figure 2. ​Example of a proof completion using Z3 solver.

9

5. Multi-view contracts
Following contract is an example of a multi-view contract where 2 quality attributes are
combined - first is security and the second is functional correctness. Our system is extremely
simplified due to JML supported features limitations of Key Tool and for this reason we
present only a single example.

 ​//@ assignable lowerValue;

 ​//@ requires goalValue >= 20 && goalValue <= 80;

 //@ also

 ​//@ ensures lowerValue == goalValue - 1;

 ​void​ ​setLowerValue​() {

 lowerValue = goalValue - ​1​;

 }

References
Key Tool: ​https://www.key-project.org/
OpenJML: ​http://openjml.org/

10

https://www.key-project.org/
http://openjml.org/

