

Real-time Operating Systems and
Systems Programming

Localization

I18n and L10n

● Internationalization – enabling translation
support for a program

● Localization – translation and modifying a
program to suit local idioms and customs

Te olete C loengus
18:25:52

ASCII

 Time before ASCII luckily outside of our
scope

 ASCII standard: characters with value of
less than 32 are non-printable (bell sound
or feeding a new paper into the printer)

 Characters above 127 free for anyone to
use

Te olete C loengus
18:25:52

IBM PC codepage (437)

 ASCII compatible
 For some European languages é and è letters
 Horizontal and vertical table-drawing characters
 Remember the older cashier screens

– (For those you can use the curses library)
 What about Hebrew,

Asian languages,
Russian?

Illustration: https://en.wikipedia.org/wiki/File:Codepage-437.png

Te olete C loengus
18:25:52

Code pages

 ASCII provides the base, upper characters
different

 Support for several languages in parallel

 Asia uses two-byte codepage
 Result: the same computer can not display

some languages in parallel (unless you create
bitmap fonts for that specific purpose)

 IBM and Microsoft code-tables split after the end
of their co-operation around 1990

 ANSI standard comes along too

Te olete C loengus
18:25:52

Unicode to the rescue

 Unicode is a collection of Code Points
 Every Code Point refers to a symbol which

sometimes is a character in some
language like A or Õ, or something else
like ffi (U+FB03)

 They exist in a rather plentiful manner
(cat faces etc)

 You can refer to the Code Points using
some specific encoding

Te olete C loengus
18:25:52

Functionality

 Combining of letters
 ~ and o > õ combinations
 ����
 Sign to swap text direction for right-to-left

languages

Te olete C loengus
18:25:52

Example

 test
 74 65 73 74
 2 byte : 00 74 00 65 00 73 00 74 (UCS-2 / UTF-16)
 Or? : 74 00 65 00 73 00 74 00
 FE FF : byte order mark

– someone in Microsoft thought that it would
be a good idea to put it before files and
strings; Avoid in Unix world

 UCS-4 means 4-byte characters

Te olete C loengus
18:25:52

Coding: UTF-8

 A specific coding
 Lower 127 characters are ASCII

compatible
 Further bytes represent multibyte

characters
 Linux has mostly completed

standardization to UTF-8; Use of anything
other than this should be considered
problematic

Te olete C loengus
18:25:52

Conclusions

 "Plain text" does not exist
 We are always interested in the encoding

of the aforementioned "plain text"
– Our Huffman encoder is also essentially

a translation program from one encoding
to another

Te olete C loengus
18:25:52

In practice

 GNU library: libiconv
 http://www.gnu.org/software/libiconv/

 fopen("file.txt", "r, ccs=UTF-8");
 wchar_t data-type
 fgetc() >> wint_t fgetwc(FILE * stream)
 EOF >> WEOF

Te olete C loengus
18:25:52

Linux support

 The input from the keyboard (what you
get from terminal stdin) is converted to
UTF-8 stream (console driver does this
work)

 The output to console is decoded using a
UTF-8 decoder and is presented using a
16-bit font

 BOM does not exist (the FE FF)

Te olete C loengus
18:25:52

Two approaches

 Keep internal data in UTF-8
 Keep data in its decoded form and

convert only upon outputting it
– A character would be an object in

memory in this case

Te olete C loengus
18:25:52

Problems of internal UTF-8

 strlen() does not tell how many positions
the cursor would move

 mbstowcs(NULL,s,0) returns the character
count according to its coding

Te olete C loengus
18:25:52

Usage

 Define locale in environment:
LANG=et_EE (for output in ISO 8859-1)
LANG=et_EE.UTF-8 (for output in UTF-8)

 #include <locale.h>
 setlocale() - LC_CTYPE or LC_ALL

arguments
 command:

locale -a shows the locales installed into
system

Te olete C loengus
18:25:52

Gettext

 Solution from Sun Microsystems
 Copied by GNU project
 Quite standard and widely used

Te olete C loengus
18:25:52

Workflow

 Write your program using gettext() function and
locale registration

 Use xgettext program to gather your strings
into .pot file

 Create translation files for your target language
using msginit command

 Translate
 Cinvert translation into binary using msgfmt

program
 Put the result into

/usr/share/locale/XX/LC_MESSAGES (XX is
language; et or de, for example)

Te olete C loengus
18:25:52

Hello.c
1 #include <libintl.h>
2 #include <locale.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 int main(void)
6 {
7 setlocale(LC_ALL, "");
8 bindtextdomain("hello", "/usr/share/locale");
9 textdomain("hello");
10 printf(gettext("Hello, world!\n"));
11 exit(0);
12 }

Source: http://oriya.sarovar.org/docs/gettext_single.html

Te olete C loengus
18:25:52

Explanation

 setlocale() gathers the users preferences for
language and its customs (date formats, week
starting date, currency, etc)

 bindtextdomain() tells that „hello“ program can
find its translation under /usr/share/locale (this
is the default and could be skipped)

 textdomain() tells that language set is named
"hello" in all of the languages

 gettext() should wrap all the strings; alias _

Te olete C loengus
18:25:52

Tools

 gtranslator

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

