
Acacia+ v2.3 - User manual

Aaron Bohy

May 10, 2019

Contents
1 What is Acacia+? 3

2 Content of the archive 4

3 Installing Acacia+ 4
3.1 Installing the dependencies . 4

3.1.1 Glib2 . 4
3.1.2 Pygraph 1.8.0 or higher . 5
3.1.3 PyGraphviz 1.1 or higher . 5
3.1.4 Numpy . 5

3.2 Installing Acacia+ . 5
3.3 Optional tools . 5

3.3.1 Wring . 6
3.3.2 LTL3BA . 6
3.3.3 Spot . 6

3.4 Known issue . 6

4 Syntax of formula and signals partition 6
4.1 LTL formula . 6

4.1.1 Signals and literals . 7
4.1.2 Boolean operators . 7
4.1.3 Temporal operators . 7
4.1.4 Comments . 7
4.1.5 Assumptions . 7

4.2 Compositional specifications . 8
4.3 Example of .ltl file . 8
4.4 Partition of signals . 8
4.5 Optional mean-payoff objective . 9
4.6 Optional probability distribution . 9
4.7 Examples of .part files . 9

1

5 Running Acacia+ 10
5.1 Quick start . 10
5.2 Execution parameters . 11

5.2.1 -h or --help . 11
5.2.2 -L or --ltl filename . 11
5.2.3 -P or --part filename . 11
5.2.4 -n or --nbw construction method . 11
5.2.5 -s or --syn synthesis method . 11
5.2.6 -a or --algo sg algorithm . 11
5.2.7 -k or --kstart starting k value . 12
5.2.8 -K or --kbound largest k value . 12
5.2.9 -y or --kstep k step . 12
5.2.10 -t or --tool toolname . 12
5.2.11 -p or --player starting player . 12
5.2.12 -C or --check tocheck . 12
5.2.13 -v or --verb verbosity . 12
5.2.14 -O or --output output . 13
5.2.15 -o or --opt opt . 13
5.2.16 -c or --crit crit opt . 13

5.3 Execution results . 13

6 Web interface 14

References 14

2

1 What is Acacia+?
Acacia+ is a tool for synthesis. It is an open source implementation in Python/C of some of the
theoretical results obtained by our research team. It is the successor of Acacia, written in Perl,
but Acacia+ is more scalable, flexible and modular. It uses the public library AaPAL [1] for the
manipulation of antichains and pseudo-antichains.

Given an LTL formula and a partition of the signals into output signals controlled by the
system and input signals controlled by the environment, Acacia+ checks for realizability of the
formula. If the formula is realizable, it synthesizes a Moore machine such that no matter what
the environment sends, the executions of the machine all satisfy the LTL formula. Acacia+ also
supports compositional synthesis from LTL specifications that consist of conjunctions of sub-
specifications. For monolithic (i.e. non-compositional) unrealizable specifications, Acacia+ can
synthesize a counter strategy for the environment.

Acacia+ implements the antichain-based incremental procedure proposed in [9] for LTL real-
izability and synthesis, with reduction to two-player safety games. It also implements optimiza-
tions detailed in [10].

Acacia+ v.2 proposes an extension to synthesis from LTL specifications with secondary
mean-payoff objectives, called LTLMP synthesis. Given an LTL formula, a partition of the signals
into output and input signals, a weight function that associates a value to signals, and a threshold
value, it checks for, and in positive case outputs, a strategy for the system to (1) satisfy the LTL
formula and (2) ensure a value greater than or equal to the given threshold, against any strategy
of the environment, where the value of an infinite word is the mean-payoff of the weights of its
letters.

The procedure for LTLMP synthesis is detailed in [4, 3]. As for LTL synthesis, this is an
antichain-based incremental procedure with reduction to safety games.

On the top of LTLMP synthesis, Acacia+ also supports the synthesis of worst-case winning
strategies, i.e. strategies that ensure the LTLMP specification against all behaviors of the environ-
ment, with good expected performance against a stochastic behavior of the environment. Details
of this functionality are given in [5, 6].

To summarize, Acacia+ has the following features:

• Realizability check of the controller specification.

• Compositional realizability from conjunctions of sub-specifications.

• Synthesis of a winning strategy for the controller if the specification is realizable (for LTL
and LTLMP).

• Synthesis of a winning strategy for the environment if the specification is monolithic and
unrealizable (only for LTL).

• Synthesis of a worst-case winning strategy with good expected performance against a
stochastic environment (only for LTLMP).

3

2 Content of the archive
In addition to Acacia+, this archive includes:

• LTL2BA 1.1, an LTL formula to Büchi automata translator, written by Dennis Oddoux and
Paul Gastin (http://www.lsv.ens-cachan.fr/˜gastin/ltl2ba/).

• a modified version of Lily 1.0.2, a linear logic synthesizer by Barbara Jobstmann and Rod-
erick Bloem, called Lily-AC.

• seven benchmarks of examples:

– the test suite included in Lily.

– the generalized buffer controller from the IBM RuleBase tutorial (http://research.
ibm.com/haifa/projects/verification/rb_homepage).

– the load balancing system provided with Unbeast, a symbolic bounded synthesis tool
written by Rudiger Ehlers.

– a benchmark of examples for the translation from LTL to equivalent deterministic
Büchi automaton.

– a benchmark of examples for the translation from LTL to equivalent deterministic
parity automaton.

– the shared resource arbiter (SRA), a benchmark of examples for synthesis from LTL
with mean-payoff objectives.

– the stochastic shared resource arbiter, an extension of SRA with 2 clients for the prob-
lem of worst-case synthesis with optimization of the expected case. Those examples
are designed for four different probability distributions.

3 Installing Acacia+

Acacia+ can be installed on Linux and Mac OS X, for both 32- and 64-bit variants of these
operating systems. Acacia+ requires several programs to get installed and run.

3.1 Installing the dependencies
The following dependencies need to be installed.

3.1.1 Glib2

Glib2 is a public library for the manipulation of data structures such as hash tables or lists in C.
For more information, see http://www.gtk.org/.

4

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://research.ibm.com/haifa/projects/verification/rb_homepage
http://research.ibm.com/haifa/projects/verification/rb_homepage
http://www.gtk.org/

3.1.2 Pygraph 1.8.0 or higher

Python-graph is a library for working with graphs in Python. It provides a suitable data struc-
ture for representing graphs and a whole set of important algorithms. The python-graph library
is available at http://code.google.com/p/python-graph/. The dot module is not
required to run Acacia+. The python-graph library can be installed using easy install as follows:

$ easy install python-graph-core

3.1.3 PyGraphviz 1.1 or higher

PyGraphviz is a Python interface to the Graphviz graph layout and visualization package. Acacia+
uses PyGraphviz to draw strategies in DOT and PNG. PyGraphviz is available at http://
networkx.lanl.gov/pygraphviz/. It can be installed using easy install as follows:

$ easy install pygraphviz

3.1.4 Numpy

Numpy is a package for scientific computing (e.g. linear algebra) with Python. Numpy is avail-
able at http://www.numpy.org/ and can be installed using easy install as follows:

$ easy install numpy

3.2 Installing Acacia+

Once all dependencies have been installed, Acacia+ can be installed by running, from the main
repository,

$ make install

This command compiles the C library (see ./lib/), and the tool LTL2BA [11] (see ./tools/ltl2ba-
1.1/) used by Acacia+ for Büchi automata construction from LTL formula, both contained in the
Acacia+ archive.

3.3 Optional tools
The following tools are only required if you want to use them, instead of LTL2BA, for automata
construction.

5

http://code.google.com/p/python-graph/
http://networkx.lanl.gov/pygraphviz/
http://networkx.lanl.gov/pygraphviz/
http://www.numpy.org/

3.3.1 Wring

Acacia+ may use the Wring [13] module included in the tool Lily [12]. It is provided in the
Acacia+ archive (see ./tools/Lily-AC/). Lily requires Perl 5.8.8 or higher. You only need to set
the Perl library path and the search path correctly, e.g.

$ export LILY=/usr/local/AcaciaPlus-v2.3/Lily-AC/
$ export PERL5LIB=${LILY}:${PERL5LIB}
$ export PATH=${LILY}:${PATH}

For permanent use, add the preceding lines in your .bashrc or .profile.

3.3.2 LTL3BA

LTL3BA [2] is a translator of LTL formula to Büchi automata based on LTL2BA. The archive
can be downloaded at http://sourceforge.net/projects/ltl3ba/. Install it by
following instructions contained in the README file of the archive and set the LTL3BA PATH
static variable in file constants.py.
Note: if you are working on Mac OS X, you might need to edit the LTL3BA Makefile and remove
the option -static from the compilation line.

3.3.3 Spot

Spot [8] is an object-oriented model checking library written in C++ that provides a translation
from LTL formula to Büchi automata. The archive can be downloaded at http://spot.
lip6.fr/wiki/. Install it by following instructions contained in the INSTALL file of the
archive and set the SPOT PATH static variable in file constants.py.

3.4 Known issue
You might face some problems while compiling the C library (Section 3.2) or while executing
Acacia+ (ctypes error when binding Python with the C library). This is an architecture issue
that might occur if your version of glib2 is not the default architecture of your machine. In that
case, you should edit ./lib/makefile to specify the architecture of your version of glib2 in the
ARCHFLAG field (e.g. for Mac OS X: ARCHFLAG=-arch i386). You can then enforce python
to execute in the desired architecture (to prevent ctypes error while binding) by running

$ arch -my architecture python acacia plus.py

4 Syntax of formula and signals partition

4.1 LTL formula
An LTL formula may contain atomic signals, boolean operators, temporal operators, and paren-
theses. Acacia+ accepts both the Wring and LTL2BA/LTL3BA input formats.

6

http://sourceforge.net/projects/ltl3ba/
http://spot.lip6.fr/wiki/.
http://spot.lip6.fr/wiki/.

4.1.1 Signals and literals

A signal is any lowercase string (optional: directly followed by =1). The negation of a signal is
any lowercase string directly followed by =0. One can also use the negation operator in front of
a signal.

4.1.2 Boolean operators

• Negation: !

• Implication: − >

• Equivalence: < − >

• And: * or &&

• Or: + or ||

4.1.3 Temporal operators

• Always: G

• Eventually: F

• Until: U

• Release: R

• Next: X

4.1.4 Comments

Any text preceded by # is ignored.

4.1.5 Assumptions

The keyword assume preceding a formula can be used to specify assumptions. A global implica-
tion is a list of assumptions (the left-hand side of the implication) followed by a list of formulas
(the right-hand side of the implication), each list being interpreted as a conjunction. For instance,

assume φ1; assume φ2; φ3; φ4;

is equivalent to

(φ1 * φ2) − > (φ3 * φ4)

7

4.2 Compositional specifications
Acacia+ supports compositional synthesis (see [9]) from compositional specifications. A list of
sub-specifications is interpreted as the conjunction of them.

Sub-specifications must begin with the keyword [spec unit name] where name is the name
of the specification. The list of sub-specifications must be followed by the line group order =
u; where u follows the next grammar of well-parenthesized expressions:

u ::= (u) | uu | name

where name is a name of a sub-specification.
The parenthesizing drives Acacia+ on the order in which the sub-specifications must be com-

bined for the compositional synthesis of the whole specification. For instance, assume we have
three specifications named u1, u2 and u3, when specifying u1 (u2 u3) for parenthesizing, the syn-
thesis engine works as follows: it first solves u1, u2 and u3 locally and gets three sets of solutions
S1, S2 and S3. Then it combines the solutions S2 and S3 into S23, and then combines S1 with
S23.

The keywords BINARY and FLAT can be used instead of giving a specific parenthesizing.
BINARY means that the sub-specifications are grouped two by two (to obtain a binary compo-
sition tree) whereas FLAT means a parenthesizing (u1 u2 . . . un) (to obtain a composition tree
of height 1).

4.3 Example of .ltl file
Here is an example the content of a .ltl file. It compositionally defines the LTL formula φ =
φ1 ∧ φ2 with φ1 = �♦a → �♦b and φ2 = �♦c → �♦d. The parenthesizing is FLAT, which
means that Acacia+ will solve φ1 and φ2 independently, and the compose the computed solutions.

This is spec 1
[spec unit u1]
assume G(F(a=1));
G(F(b=1));

This is spec 2
[spec unit u2]
assume G(F(c=1));
G(F(d=1));

Parenthesizing
group order = (u1 u2);

4.4 Partition of signals
The set P of signals must be partitioned into the set I of input signals (for the environment)
and the O set of output signals (for the system). The .part file contains information about the

8

partition of signals. The input (resp. output) signals are written, separated by a white space, next
to keyword .inputs (resp. .outputs).

4.5 Optional mean-payoff objective
Acacia+ supports synthesis from LTL specifications with secondary (optional) mean-payoff ob-
jectives, or LTLMP synthesis (see [4, 3]). In the case of LTLMP synthesis, the mean-payoff param-
eters must be specified in the .part file, as follows.

The weight function associates an integers vector, written (w1, w2, . . . , wk), to each literal of
P . Keywords .values i, .values !i, .values o and .values !o are respectively for values associated
to input signals, the negation of input signals, output signals and the negation of output signals.
The ordering of the vectors is the same as for associated signals.

The threshold vector is mandatory if at least one literal has an associated not null weight. It
has to be written next to keyword .nu.

The minimum (resp. maximum) vector of credits considered is written next to keyword
.c start (resp. .c bound). Moreover, the incremental step vector is written next to keyword
.c step.

4.6 Optional probability distribution
Acacia+ supports, on the top of LTLMP synthesis, the synthesis of a worst-case winning strat-
egy which behaves well against an environment playing according to a probability distribution
(see [5, 6]). In this case, the probability distribution has to be specified in the .part file, as follows.

The optional probability distribution on the set of input signals is written next to keyword
.prob distr. Probabilities must be values in the interval]0, 1[. If the probability distribution
is specified, a probability must be associated with each input signal. This corresponds to the
probability of this signal to be asserted at each time unit. The ordering of the values is the same
as for associated signals. By default, the probability distribution is uniform, i.e. each signal has
probability 1

2
to be asserted at each time unit.

Note: this option is only available when synthesizing from LTL with a one-dimensional mean-
payoff objective.

4.7 Examples of .part files
Here is an example the content of a .part file for a two-dimensional mean-payoff objective. It
defines a weight function w such that w(b) = (−1, 0), w(d) = (0,−1), and w(l) = (0, 0)
for all other literals. The threshold ν is equal to (−0.2,−0.2). The procedure implemented in
Acacia+ reduces the LTLMP synthesis problem to the problem of solving energy safety games.
The algorithms for solving those energy safety games are incremental on the maximum credit
considered (see [4] for more details). This .part file indicates that the incremental algorithms must
consider maximum credits values C ∈ N2 equal to (0, 0), (5, 5), (10, 10), (15, 15) and (20, 20),
and stop as soon as a winning strategy is found for some C ∈ N2.

9

.inputs a c

.values i (0,0) (0,0)

.values !i (0,0) (0,0)

.outputs b d

.values o (-1,0) (0,-1)

.values !o (0,0) (0,0)

.nu (-0.2,-0.2)

.c start (0,0)

.c bound (20,20)

.c step (5,5)

Here is an example the content of a .part file for a one-dimensional mean-payoff objective
with a probability distribution on the set of input signals. This file indicates that the environment
has probability 3

5
(resp. 1

5
) to assert r1 (resp. r2) at each time unit, and thus probability 2

5
(resp.

4
5
) not to assert r1 (resp. r2). The underlying probability distribution π : ΣI →]0, 1[on the

actions of the environment is defined such that π(r1r2) = 3
5
· 1
5

= 3
25

, π(¬r1r2) = 2
5
· 1
5

= 2
25

,
π(r1¬r2) = 3

5
· 4
5

= 12
25

and π(¬r1¬r2) = 2
5
· 4
5

= 8
25

.

.inputs r1 r2

.outputs g1 g2 w1 w2

.values o 0 0 -1 -2

.nu -1.4

.c start 0

.c bound 13

.c step 1

.prob distr 0.6 0.2

5 Running Acacia+

5.1 Quick start
Acacia+ needs two mandatory arguments to execute: a file containing an LTL specification (.ltl
extension) and a file containing a partition of the signals (.part extension). Examples out of
seven benchmarks are contained in the Acacia+ archive (see Section 2). Acacia+ offers many
execution parameters. To execute Acacia+ with the default configuration on the 13th of the
benchmark demo-lily, run

& python acacia plus.py --ltl examples/demo-lily/demo-v13.ltl --part
examples/demo-lily/demo-v13.part

To display the helper, run

& python acacia plus.py --help

10

5.2 Execution parameters
In this section, we describe each execution parameter.

5.2.1 -h or --help

Shows the helper and exit Acacia+.

5.2.2 -L or --ltl filename

Specifies a .ltl file containing an LTL specification (see Sections 4.1, 4.2 for syntax).

5.2.3 -P or --part filename

Specifies a .part file containing the partition of signals and optional mean-payoff and probability
distribution (see Sections 4.4, 4.5, 4.6 for syntax).

5.2.4 -n or --nbw construction method

Specifies the method used to construct universal co-Büchi automata from LTL specifications.
Two methods are available: monolithic (MONO, by default) and compositional (COMP). In the
first case, a single automatonAφ is constructed from the given LTL specification φ. For the latter
case, the specification must be given as a conjunction φ1 ∧ · · · ∧ φn of sub-specifications (see
Section 4.2 for syntax). In this case, an automaton Aφi is constructed for every φi.

5.2.5 -s or --syn synthesis method

Specifies the method used for synthesis. Two methods are available: monolithic (MONO, by
default) and compositional (COMP, only if the specification φ is a conjunction of φi’s). When
the automaton construction method is compositional and the synthesis method is monolithic, the
latter starts with the union of all automata Aφi . If both the construction and synthesis methods
are compositional, each automaton Aφi is solved independently, and the computed results are
composed according to the given parenthesizing (see Section 4.2 for syntax). The compositional
approach allows to solve much larger specifications. The parenthesizing may also influence the
performance.

5.2.6 -a or --algo sg algorithm

Specifies the algorithm used for solving the underlying safety game. Two algorithms are avail-
able: the forward (FORWARD, by default) and the backward (BACKWARD) algorithms. The
forward algorithm is proposed in [9]. This algorithm is a variant of the OTFUR algorithm of [7].
The backward algorithm is a classical fixpoint algorithm.

Compared to the backward algorithm, the forward algorithm has the advantage of computing
the winning states in the safety game that are reachable from the initial state. Nevertheless,

11

it computes a single winning strategy if it exists, whereas the backward algorithm computes a
fixpoint from which we can easily enumerate the set of all winning strategies in the safety game.
In general, the forward algorithm is faster than the backward one.

In the case of a compositional synthesis with forward option enabled, each intermediate
safety game is solved backward and the game is solved forward.

5.2.7 -k or --kstart starting k value

Specifies the starting value of K for the incremental algorithm. Recall that K is the maximum
number of final states that are seen by words accepted in a universal K-co-Büchi automaton.

5.2.8 -K or --kbound largest k value

Specifies the maximal value of K for the incremental algorithm.

5.2.9 -y or --kstep k step

Specifies the incremental step on K values.

5.2.10 -t or --tool toolname

Specifies the tool used by Acacia+ to convert the LTL specification into an equivalent universal
co-Büchi automaton. Four tools are available: LTL2BA (by default), LTL3BA, Wring and Spot
(see Section 3.3 for installation instructions).

5.2.11 -p or --player starting player

Specifies the starting player in the realizability game: the system (2, by default) or the environ-
ment (1).

5.2.12 -C or --check tocheck

Specifies if Acacia+ has to check realizability of the LTL specification (REAL, by default),
unrealizability (UNREAL) or both in parallel (BOTH).
Note: Unrealizability checking is only available for monolithic formulas, without mean-payoff
objective.

5.2.13 -v or --verb verbosity

Specifies the verbosity level: no text (0), execution recap only (1), digest display (2, by default)
or detailed display (3).

12

5.2.14 -O or --output output

Specifies what Acacia+ needs to synthesize from the antichain of winning states in the safety
game. The user can ask for the synthesis of one arbitrary winning strategy (ARBITRARY, by
default); the set of maximal winning strategies, i.e. by only considering the antichain of winning
states, not its closure (MAX); the set of all winning strategies (ALL), i.e. by considering the
whole closure of the antichain; the optimal strategy against an environment playing according to
a given probability distribution (OPTIMAL, see Section 4.6).

5.2.15 -o or --opt opt

Concerns two optimizations of the implemented procedure:

• Detect bounded/unbounded states (on the universal co-Büchi automaton):
Computes an under-approximation of the set of states which cannot carry a counter value
at least k, i.e. which cannot be reached by a path containing more than k final states. Those
states are called bounded states. The optimization reduces the state space of the underlying
safety game.

• Detect k-surely losing states (on the turn-based universal co-Büchi automaton):
Tries to reduce the size of the turn-based automaton by computing k-surely losing states
and replacing them by a single trap state. A state is k-surely losing if the environment has
a strategy from this state to prevent the system to win.

Both optimizations are enabled by default. Set to NONE to disable both optimizations, to 1 to
enable optimization 1 only, and to 2 to enable optimization 2 only.

5.2.16 -c or --crit crit opt

Concerns the critical signals optimization. This optimization makes the backward fixpoint al-
gorithm more efficient by limiting the input signals to critical ones, at each step of the fixpoint
computation (see [10] for details). The optimization is enabled by default. Set to OFF to disable.

5.3 Execution results
The output of the execution indicates if the input specification φ is realizable, and in this case
proposes at least one winning strategy for the system. At least one winning strategy for the
environment can be returned when φ is unrealizable (only in case of a monolithic automaton
construction, without mean-payoff objective).

The synthesized strategies are represented by transition systems where transitions are labeled
with symbols (o ∪ i) or (i ∪ o) such that o is an action of the system and i is an action of the
environment. The action of the starting player is always leading on transitions labels. LetM be a
transition system representing strategies for the system (resp. the environment). If the transition
system only represents one strategy, the outgoing transitions of each state share the same o (resp.
i). The transition system has to be interpreted as follows: in some state q, the system (resp. the

13

environment) asserts one of the actions available on the outgoing transitions of q and the next
state is determined by the actions of the environment (resp. the system).

When the output transition system is small enough (< 20 states), it is also drawn in PNG and
DOT using PyGraphviz.

6 Web interface
For convenience, Acacia+ can be used directly online via a user-friendly web interface, where
a number of examples and benchmarks have already been pre-loaded with adequate parameters
configuration. The URL of the web interface is http://lit2.ulb.ac.be/acaciaplus/
onlinetest/.

References
[1] AaPAL website. http://lit2.ulb.ac.be/aapal/.

[2] T. Babiak, F. Blahoudek, M. Kretı́nský, and J. Strejcek. Effective translation of LTL to
deterministic Rabin automata: Beyond the (F, G)-fragment. In D. V. Hung and M. Ogawa,
editors, ATVA, volume 8172 of Lecture Notes in Computer Science, pages 24–39. Springer,
2013.

[3] A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. Synthesis from LTL specifications with
mean-payoff objectives. CoRR, abs/1210.3539, 2012.

[4] A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. Synthesis from LTL specifications with
mean-payoff objectives. In N. Piterman and S. A. Smolka, editors, TACAS, volume 7795
of Lecture Notes in Computer Science, pages 169–184. Springer, 2013.

[5] A. Bohy, V. Bruyère, and J.-F. Raskin. Symblicit algorithms for optimal strategy synthesis
in monotonic Markov decision processes. In SYNT, EPTCS, 2014. 17 pages.

[6] A. Bohy, V. Bruyère, and J.-F. Raskin. Symblicit algorithms for optimal strategy synthesis
in monotonic Markov decision processes. CoRR, abs/1402.1076, 2014.

[7] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly algorithms
for the analysis of timed games. In M. Abadi and L. de Alfaro, editors, CONCUR, volume
3653 of Lecture Notes in Computer Science, pages 66–80. Springer, 2005.

[8] A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library using
transition-based generalized Büchi automata. In D. DeGroot, P. G. Harrison, H. A. G.
Wijshoff, and Z. Segall, editors, MASCOTS, pages 76–83. IEEE Computer Society, 2004.

[9] E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional algorithms for LTL syn-
thesis. Formal Methods in System Design, 39(3):261–296, 2011.

14

http://lit2.ulb.ac.be/acaciaplus/onlinetest/
http://lit2.ulb.ac.be/acaciaplus/onlinetest/
http://lit2.ulb.ac.be/aapal/

[10] E. Filiot, N. Jin, and J.-F. Raskin. Exploiting structure in ltl synthesis. STTT, 15(5-6):541–
561, 2013.

[11] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In G. Berry, H. Comon,
and A. Finkel, editors, CAV, volume 2102 of Lecture Notes in Computer Science, pages
53–65. Springer, 2001.

[12] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD, pages 117–124.
IEEE Computer Society, 2006.

[13] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In E. A. Emerson
and A. P. Sistla, editors, CAV, volume 1855 of Lecture Notes in Computer Science, pages
248–263. Springer, 2000.

15

	What is Acacia+?
	Content of the archive
	Installing Acacia+
	Installing the dependencies
	Glib2
	Pygraph 1.8.0 or higher
	PyGraphviz 1.1 or higher
	Numpy

	Installing Acacia+
	Optional tools
	Wring
	LTL3BA
	Spot

	Known issue

	Syntax of formula and signals partition
	LTL formula
	Signals and literals
	Boolean operators
	Temporal operators
	Comments
	Assumptions

	Compositional specifications
	Example of .ltl file
	Partition of signals
	Optional mean-payoff objective
	Optional probability distribution
	Examples of .part files

	Running Acacia+
	Quick start
	Execution parameters
	-h or --help
	-L or --ltl filename
	-P or --part filename
	-n or --nbw construction_method
	-s or --syn synthesis_method
	-a or --algo sg_algorithm
	-k or --kstart starting_k_value
	-K or --kbound largest_k_value
	-y or --kstep k_step
	-t or --tool toolname
	-p or --player starting_player
	-C or --check tocheck
	-v or --verb verbosity
	-O or --output output
	-o or --opt opt
	-c or --crit crit_opt

	Execution results

	Web interface
	References

