
  

Real-time Operating Systems and 
Systems Programming

Networking
Lecture 11



  

Summary

● Recap on Unix IO
● Networking



  

Recap on IO

● Two ways of working with files
● Unix IO: open(), read(), write(), close()

– System calls to kernel, not buffered, can be interrupted, 
sometimes won't return everything etc

● Standard IO: fopen(), fread(), fwrite(), fclose()
– Constructions built on system calls, buffered, widely 

used, easier



  

Networking

● TCP/IP protocol
● On hardware level we have network adapter 

which uses system bus to communicate with 
memory (usually with DMA)



  

Internet

● Contains a number of interconnected networks
● Can join LANs and WANs with incompatible 

technology
● Concerns how a source host can send data to 

destination host.
● Solution is a protocol which tells how routers 

should cooperate to deliver the data
● Naming scheme + Delivery mechanism



  

Naming Scheme

● Computers are numbered
● 193.40.252.80
● Basically a 4-byte number (regular integer)
● Some numbers have special meanings:

– 127.0.0.1 - localhost
– 192.168.X.X - LAN address

● DNS service maps names to addresses
● started in 1988 (before that: hosts.txt)
● dijkstra.cs.ttu.ee >> 193.40.252.80



  

Getting and creating addresses

● Addresses have structure:

● Network byte order: big-endian

Hostname conversion

struct in_addr {
unsigned int s_addr; /* network byte order */

};

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int hostshort);

unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned long int netshort);

int inet_aton(const char *cp, 
struct in_addr * inp);

char *inet_ntoa(struct in_addr in);



  

Domain names

● Domains are structured
● dijkstra.cs.ttu.ee -> ee > ttu > cs > dijkstra

● Host entry structures

● Retrieval and query

struct hostent {
char *h_name; /* official name */
char **h_aliases; /* null-terminated array of domains */
int h_addrtype; /* address type AF_INET */
int h_length; /* address length */
char **h_addr_list; /* null terminated array of in_addr structs*/ 

};

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const char *addr, int len, 0);



  

Domain name mappings

● One to one
● Host has only one name and address

● Multiple domains to one address
● dragon.ee www.dragon.ee

● Multiple addresses to multiple domains
● most of google

● Consider when working with host entries



  

Internet connection

● Communication done by sending streams of 
bytes over the wire

● Full duplex: you can both read and write
● Point to point: connects a pair of processes
● Socket: endpoint for communication

● address:port

● Connection is a pair of sockets



  

Socket interface

● Berkeley sockets
● developed by their researchers, distributed with 

Unix 4.2 BSD kernel and distributed to universities 
and labs

● Socket from the view of kernel: communication 
endpoint

● Socket from a programs view: an open file



  

Socket addresses

struct sockaddr {
unsigned short sa_family; /* protocol family */
char sa_data; /* address data */

}

struct sockaddr_in {
unsigned short sin_family; /* address family AF_INET */
unsigned short sin_port; /* port number in network byte order */
struct in_addr sin_addr; /* IP address in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

}

● Socket address; general and specific



  

Overview of interface

● Client
● socket()
● connect()
● read()/write()
● close()

● Server
● socket()
● bind()
● listen()
● accept()
● read()/write()
● close()



  

socket()

● Creates a socket descriptor

// int socket(int domain, int type, int protocol);

clientfd = socket(AF_INET, SOCK_STREAM, 0);



  

connect()

● Establish a connection with given socket 
address

● Blocks until successful or error occurs
int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);



  

bind()

● Associate a socket with an address and port

● Convert active socket to listening socket

● Accept incoming connection
● note that a new file descriptor is returned; why?

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

int listen(int sockfd, int backlog);

int accept(int listenfd, struct sockaddr *addr, int *addrlen);



  

Notes
● When a connection is terminated while it is 

read, a signal is generated
● EPIPE: Broken pipe, program terminates unless 

handled

● There are additional functions to replace read() 
and write() with sockets
● send(), recv(): et specify additional flags for sending 

and receiving data

● For UDP you can use recvfrom() sendto()
● connect() or bind()/listen() are not needed for them



  

Testing connections: netcat

● Program: nc
● send
● receive


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

