

Real-time Operating Systems and
Systems Programming

Interrupts, Signals

Interrupts (recap)

● A way of handling input/output
● Used for other things too
● Hardware must have support
● Interrupt tables with handling routines
● Can be generated in software

Use in security

● Protected mode relies on interrupts
● Memory pages for User and Privileged data
● Interrupts switch from user to superuser

Interrupt predictability

● Problems in debugging: difficult to predict
● Synchronous (arrive when you are ready)

● Predictable

● Asynchronous (arrive from external sources)
● Unpredictable

● Latter the reason for criticizing use in life-critical
embedded applications.

● Still effective for less risky multi-tasking

Critical data

● Shared data may cause corruptions
● Possible solutions:

● Disable interrupts
● Serialize access

Example: Buffered IO

● Control taken from user
● Software buffers, error handling
● Data is waiting in buffer, program thinks it's sent
● When data sent/received – interrupt is

generated

Trap & System calls

● Processors provide syscall n – trap instruction
● System calls encode arguments, execute

syscall to run service n
● Then system call decoded & executed on

kernel level
● Seem identical to normal functions to

programmer
● man syscalls for complete list

Signals

● Interface to interrupts & other conditions on
user level

● Sent for 2 reasons:
● Kernel has detected an event such as divide-by-

zero error, illegal memory access etc
● A process uses kill() system call to send a signal.

Can be sent to process itself (shortcut: raise()).

Life of a signal

● Pending signal – signal was sent, not received
● At most one pending signal of any single type for a

process, others discarded

● Blocked signals wait
● Ignored signals are discarded
● Other signals are delivered to the process

(only once).

Received signal

● Each signal has predefined default action:
● Process terminates
● Process termiantes and dumps core
● Process stops until restarted by SIGCONT signal
● Process ignores the signal

● Process, if still there, continues where it was.
● Unless a system call was interrupted, which

sometimes is an error

Signal handling issues

● Pending signals are blocked while handling the
same type of signal.

● Pending signals are not queued: if one SIGINT
is already pending, other is discarded

● System calls are interrupted on some systems
(read(), wait(), accept(), set errno to EINTR)

● For more portable signal handling sigaction() is
defined in Posix-compilant systems

Blocking signals

● Processes can explicitly block and unblock
signals with sigprocmask() function.
● sigprocmask(), sigemptyset(), sigfullset(),

sigaddset(), sigdelset(), sigismember() - returns 1 if
member, 0 if not, -1 on error

Signal handling patterns

● Make the handler as small as possible, possibly
changing only one global variable

● Block some of the signals during handling
● Handler which quits might do only cleanup,

then re-assign default action to current signal,
then raise() the same signal again.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

